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Abstract
How do we compare between hypotheses that
are entirely consistent with observations? The
marginal likelihood (aka Bayesian evidence),
which represents the probability of generating our
observations from a prior, provides a distinctive
approach to this foundational question, automat-
ically encoding Occam’s razor. Although it has
been observed that the marginal likelihood can
overfit and is sensitive to prior assumptions, its
limitations for hyperparameter learning and dis-
crete model comparison have not been thoroughly
investigated. We first revisit the appealing prop-
erties of the marginal likelihood for learning con-
straints and hypothesis testing. We then highlight
the conceptual and practical issues in using the
marginal likelihood as a proxy for generalization.
Namely, we show how marginal likelihood can be
negatively correlated with generalization, with im-
plications for neural architecture search, and can
lead to both underfitting and overfitting in hyper-
parameter learning. We provide a partial remedy
through a conditional marginal likelihood, which
we show is more aligned with generalization, and
practically valuable for large-scale hyperparame-
ter learning, such as in deep kernel learning.

1. Introduction
The search for scientific truth is elusive. No matter how
consistent a theory may be with all available data, it is al-
ways possible to propose an alternative theory that is equally
consistent. Moreover, no theory is entirely correct: there
will always be missed nuances, or phenomena we have not
or cannot measure. To decide between different possible
explanations, we heavily rely on a notion of Occam’s razor
— that the “simplest” explanation of data consistent with our
observations is most likely to be true. For example, there are
alternative theories of gravity to general relativity that are
similarly consistent with observations, but general relativity
is preferred because of its simplicity and intuitive appeal.

Jeffreys (1939), and many follow up works, showed that
Occam’s razor is not merely an ad-hoc rule of thumb, but
a rigorous quantifiable consequence of probability theory.
MacKay (2003, Chapter 28) arguably makes this point most
clearly. Suppose we observe what appears to be a block

behind a tree. If we had x-ray vision, perhaps we would see
that there are in fact two blocks of equal height standing
next to each other. The two block model can generate many
more observations, but as a consequence, has to assign these
observations lower probabilities. For what we do observe,
the one block hypothesis is significantly more likely (see
Figure 1(c)), even if we believe each hypothesis is equally
likely before we observe the data. This probability of gen-
erating a dataset from a prior model is called the marginal
likelihood, or Bayesian evidence. The marginal likelihood
is widely applied to hypothesis testing, and model selec-
tion, where we wish to know which trained model is most
likely to provide the best generalization. Marginal likeli-
hood optimization has also been applied with great success
for hyperparameter learning, where it is known as empirical
Bayes, often outperforming cross-validation.

There is a strong polarization in the way marginal likelihood
is treated. Advocates make compelling arguments about its
philosophical benefits for hypothesis testing, its ability to
learn constraints, and its practical successes, especially in
Gaussian process kernel learning — often embracing the
marginal likelihood as a nearly all-encompassing solution
to model selection (e.g., MacKay, 1992c; Minka, 2001; Ras-
mussen and Williams, 2006; Wilson et al., 2016a). Critics
tend to focus narrowly on its sensitivity to prior assump-
tions, without appreciating its many strengths (e.g., Domin-
gos, 1999; Gelman, 2011; Gelman et al., 2013). There is
a great need for a more comprehensive exposition, clearly
demonstrating the limits of the marginal likelihood, while
acknowledging its unique strengths, especially given the
rise of the marginal likelihood in deep learning.

Rather than focus on a specific feature of the marginal like-
lihood, such as its sensitivity to the prior in isolation, in
this paper we aim to fundamentally re-evaluate whether the
marginal likelihood is the right metric for predicting the gen-
eralization of trained models, and learning hyperparameters.
We argue that it does a good job of prior hypothesis testing,
which is exactly aligned with the question it is designed to
answer. However, we show that the marginal likelihood is
only peripherally related to the question of which model we
expect to generalize best after training, with significant im-
plications for its use in model selection and hyperparameter
learning.

We first highlight the strengths of the marginal likelihood,
and its practical successes, in Section 3. We then de-
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scribe several practical and philosophical issues in using the
marginal likelihood for selecting between trained models in
Section 4, and present a conditional marginal likelihood as a
partial remedy for these issues. We exemplify these abstract
considerations throughout the remainder of the paper, with
several significant findings. We show that the marginal like-
lihood can lead to both underfitting and overfitting in data
space, explaining the fundamental mechanisms behind each.
In Section 5, we re-examine the relationship between the
marginal likelihood and training efficiency, where we show
that a conditional marginal likelihood, unlike the marginal
likelihood, is correlated with generalization for both small
and large datasizes. In Section 6, we demonstrate that the
marginal likelihood can be negatively correlated with the
generalization of trained neural network architectures. Fi-
nally, in Section 7 we show that the conditional marginal
likelihood provides particularly promising performance for
deep kernel hyperparameter learning. We make our code
available here.

2. Related Work
As as early as Jeffreys (1939), it has been known that the log
marginal likelihood (LML) encodes a notion of Occam’s
razor arising from the principles of probability, providing a
foundational approach to hypothesis testing (Good, 1968;
1977; Jaynes, 1979; Gull, 1988; Smith and Spiegelhalter,
1980; Loredo, 1990; Berger and Jeffreys, 1991; Jefferys and
Berger, 1991; Kass and Raftery, 1995). In machine learn-
ing, Bayesian model selection was developed and popular-
ized by the pioneering works of David MacKay (MacKay,
1992c;b;d;a). These works develop early Bayesian neural
networks, and use a Laplace approximation of the LML for
neural architecture design, and learning hyperparameters
such as weight-decay (MacKay, 1992b; 1995).

In addition to the compelling philosophical arguments, the
practical success of the marginal likelihood is reason alone
to study it closely. For example, LML optimization is now
the de facto procedure for kernel learning with Gaussian
processes, working much better than other approaches such
as standard cross-validation and covariogram fitting, and can
be applied in many cases where these standard alternatives
are simply intractable (e.g., Rasmussen and Williams, 2006;
Wilson, 2014; Lloyd et al., 2014; Wilson et al., 2016a).

Moreover, in variational inference, the evidence lower
bound (ELBO) to the LML is often used for automatically
setting hyperparameters (Hoffman et al., 2013; Kingma and
Welling, 2013; Kingma et al., 2015; Alemi et al., 2018).
Notably, in variational auto-encoders (VAE), the whole de-
coder network (often, with millions of parameters) is treated
as a model hyperparameter and is trained by maximizing
the ELBO (Kingma and Welling, 2014).

Recently, the Laplace approximation (LA) and its use in
marginal likelihood model selection has quickly regained
popularity in Bayesian deep learning (Kirkpatrick et al.,
2017; Ritter et al., 2018; Daxberger et al., 2021; Immer et al.,
2021). Notably, Immer et al. (2021) use a scalable Laplace
approximation of the marginal likelihood to predict which
architectures will generalize best, and for automatically
setting hyperparameters in deep learning, in the vein of
MacKay (1992c), but with much larger networks.

MacKay (2003) uses the Laplace approximation to make
connections between the marginal likelihood and minimum
description length framework. MacKay (1995) also notes
that structural risk minimization (Guyon et al., 1992) has
the same scaling behaviour as the marginal likelihood. In
recent years, PAC-Bayes (e.g., Alquier, 2021) has provided
a popular framework for generalization bounds on stochastic
networks, although it is distinct from the LML. In particular,
PAC-Bayes bounds the expected generalization of a single
posterior sample, whereas the LML measures the probability
of generating the training data using the prior model average.

Critiques of the marginal likelihood often note its inability
to manage improper priors for hypothesis testing, sensitiv-
ity to prior assumptions, lack of uncertainty representation
over hyperparameters, and its potential misuse in advocating
for models with fewer parameters (e.g., Domingos, 1999;
Gelman et al., 2013; Gelman, 2011; Ober et al., 2021). To
address such issues, Berger and Pericchi (1996) propose the
intrinsic Bayes factor to enable Bayesian hypothesis testing
with improper priors. Decomposing the LML into a sum
over the data, Fong and Holmes (2020) use a similar mea-
sure to help reduce sensitivity to prior assumptions when
comparing trained models. Lyle et al. (2020) also use this
decomposition to suggest that LML is connected to train-
ing speed. Rasmussen and Ghahramani (2001) additionally
note that the LML operates in function space, and can favour
models with many parameters, as long as they do not induce
a distribution over functions unlikely to generate the data.

Our work complements the current understanding of the
LML, and has many features that distinguish it from prior
work: (1) We provide a comprehensive treatment of the
strengths and weaknesses of the LML across hypothesis
testing, model selection, architecture search, and hyperpa-
rameter optimization; (2) While it has been noted that LML
model selection can be sensitive to prior specification, we ar-
gue that the LML is answering an entirely different question
than “will my trained model provide good generalization?”,
even if we have a reasonable prior; (3) We differentiate
between LML hypothesis testing of fixed priors, and pre-
dicting which trained model will generalize best; (4) We
also show that LML optimization can lead to underfitting
or overfitting in function space; (5) We show the recent
characterization in Lyle et al. (2020) that “models which
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expect to generalize best after training, with significant im-
plications for its use in model selection and hyperparameter
learning.

We first highlight the strengths of the marginal likelihood,
and its practical successes, in Section 3. We then de-
scribe several practical and philosophical issues in using the
marginal likelihood for selecting between trained models in
Section 4, and present a conditional marginal likelihood as a
partial remedy for these issues. We exemplify these abstract
considerations throughout the remainder of the paper, with
several significant findings. We show that the marginal like-
lihood can lead to both underfitting and overfitting in data
space, explaining the fundamental mechanisms behind each.
In Section 5, we re-examine the relationship between the
marginal likelihood and training efficiency, where we show
that a conditional marginal likelihood, unlike the marginal
likelihood, is correlated with generalization for a range of
datasizes. In Section 6, we demonstrate that the marginal
likelihood can be negatively correlated with the general-
ization of trained neural network architectures. Finally, in
Section 7 we show that the conditional marginal likelihood
provides particularly promising performance for deep kernel
hyperparameter learning. We make our code available here.

2. Related Work
As as early as Jeffreys (1939), it has been known that the log
marginal likelihood (LML) encodes a notion of Occam’s
razor arising from the principles of probability, providing a
foundational approach to hypothesis testing (Good, 1968;
1977; Jaynes, 1979; Gull, 1988; Smith and Spiegelhalter,
1980; Loredo, 1990; Berger and Jeffreys, 1991; Jefferys and
Berger, 1991; Kass and Raftery, 1995). In machine learn-
ing, Bayesian model selection was developed and popular-
ized by the pioneering works of David MacKay (MacKay,
1992c;b;d;a). These works develop early Bayesian neural
networks, and use a Laplace approximation of the LML for
neural architecture design, and learning hyperparameters
such as weight-decay (MacKay, 1992b; 1995).

In addition to the compelling philosophical arguments, the
practical success of the marginal likelihood is reason alone
to study it closely. For example, LML optimization is now
the de facto procedure for kernel learning with Gaussian
processes, working much better than other approaches such
as standard cross-validation and covariogram fitting, and can
be applied in many cases where these standard alternatives
are simply intractable (e.g., Rasmussen and Williams, 2006;
Wilson, 2014; Lloyd et al., 2014; Wilson et al., 2016a).

Moreover, in variational inference, the evidence lower
bound (ELBO) to the LML is often used for automatically
setting hyperparameters (Hoffman et al., 2013; Kingma and
Welling, 2013; Kingma et al., 2015; Alemi et al., 2018).

Notably, in variational auto-encoders (VAE), the whole de-
coder network (often, with millions of parameters) is treated
as a model hyperparameter and is trained by maximizing
the ELBO (Kingma and Welling, 2014).

Recently, the Laplace approximation (LA) and its use in
marginal likelihood model selection has quickly regained
popularity in Bayesian deep learning (Kirkpatrick et al.,
2017; Ritter et al., 2018; Daxberger et al., 2021; Immer et al.,
2021). Notably, Immer et al. (2021) use a scalable Laplace
approximation of the marginal likelihood to predict which
architectures will generalize best, and for automatically
setting hyperparameters in deep learning, in the vein of
MacKay (1992c), but with much larger networks.

MacKay (2003) uses the Laplace approximation to make
connections between the marginal likelihood and minimum
description length framework. MacKay (1995) also notes
that structural risk minimization (Guyon et al., 1992) has
the same scaling behaviour as the marginal likelihood. In
recent years, PAC-Bayes (e.g., Alquier, 2021) has provided
a popular framework for generalization bounds on stochastic
networks, although it is distinct from the LML. In particular,
PAC-Bayes bounds the expected generalization of a single
posterior sample, whereas the LML measures the probability
of generating the training data using the prior model average.

Critiques of the marginal likelihood often note its inability
to manage improper priors for hypothesis testing, sensitiv-
ity to prior assumptions, lack of uncertainty representation
over hyperparameters, and its potential misuse in advocating
for models with fewer parameters (e.g., Domingos, 1999;
Gelman et al., 2013; Gelman, 2011; Ober et al., 2021). To
address such issues, Berger and Pericchi (1996) propose the
intrinsic Bayes factor to enable Bayesian hypothesis testing
with improper priors. Decomposing the LML into a sum
over the data, Fong and Holmes (2020) use a similar mea-
sure to help reduce sensitivity to prior assumptions when
comparing trained models. Lyle et al. (2020) also use this
decomposition to suggest that LML is connected to train-
ing speed. Rasmussen and Ghahramani (2001) additionally
note that the LML operates in function space, and can favour
models with many parameters, as long as they do not induce
a distribution over functions unlikely to generate the data.

Our work complements the current understanding of the
LML, and has many features that distinguish it from prior
work: (1) We provide a comprehensive treatment of the
strengths and weaknesses of the LML across hypothesis
testing, model selection, architecture search, and hyperpa-
rameter optimization; (2) While it has been noted that LML
model selection can be sensitive to prior specification, we ar-
gue that the LML is answering an entirely different question
than “will my trained model provide good generalization?”,
even if we have a reasonable prior; (3) We differentiate be-
tween LML hypothesis testing of fixed priors, and predicting
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train faster will obtain a higher LML” is not generally true,
and revisit the connection between LML and training ef-
ficiency; (6) We show that in modern deep learning, the
Laplace LML is not well-suited for architecture search and
hyperparameter learning despite its recent use; (7) We study
a conditional LML (CLML), related to the metrics in Berger
and Pericchi (1996) and Fong and Holmes (2020), but with
a different rationale and application, where we show it pro-
vides compelling results for neural architecture comparison,
deep kernel hyperparameter learning, and transfer learning.

3. The Case for the Marginal Likelihood
While we are primarily focused on exploring the limitations
of the marginal likelihood, we emphasize that the marginal
likelihood distinctively addresses foundational questions in
hypothesis testing and constraint learning. By encoding a
notion of Occam’s razor, the marginal likelihood can out-
perform cross-validation, without intervention and using
training data alone. Since we can directly take gradients
of the marginal likelihood with respect to hyperparameters
on the training data, it can also be applied where standard
cross-validation cannot, for computational reasons.

Definition. The marginal likelihood is the probability that
we would generate a dataset D with a model M if we
randomly sample from a prior over its parameters p(w):
p(D|M) =

∫
p(D|M, w)p(w|M)dw. It is named the

marginal likelihood, because it is a likelihood formed
from marginalizing parameters w. It is also known as
the Bayesian evidence. Maximizing the marginal likeli-
hood is sometimes referred to as empirical Bayes, type-
II maximum likelihood estimation, or maximizing the evi-
dence. We can also decompose the marginal likelihood as
p(D|M) =

∏n
i p(Di|D<i,M), where it can equivalently

be understood as how good the model is at predicting each
data point in sequence given every data point before it.

Occam factors. In the definition of the marginal likeli-
hood, the argument of the integral is p(w|D,M) up to a
constant of proportionality. If we assume the posterior is
relatively concentrated around ŵ = argmaxwp(w|D,M),
then we can perform a rectangular approximation of the
integral, as the height of the posterior times its width, σw|D,
to find p(D|M) ≈ p(D|ŵ,M) · σw|D

σw
, where p(D|ŵ,M)

is the data fit and σw|D
σw

is the Occam factor — the width
of the posterior over the width of the prior. If the posterior
contracts significantly from the prior, there will be a large
Occam penalty, leading to a low LML.

Occam’s Razor. The marginal likelihood automatically
encapsulates a notion of Occam’s razor, as in Figure 1(c).
If a model can only generate a small number of datasets,
it will generate those datasets with high probability, since
the marginal likelihood is a normalized probability density.

By the same reasoning, a model which can generate many
datasets cannot assign significant probability density to all
of them. For a given dataset, the marginal likelihood will
automatically favour the most constrained model that is
consistent with the data. For example, suppose we have
f1(x,w) = w1x, and f2(x,w) =

∑100
i=1 wix

i, with p(w) =
N (0, I) in both cases, and data given by a straight line with
a particular slope. Both models have parameters consistent
with the data, yet the first model is significantly more likely
to generate this dataset from its prior over functions.

Hypothesis Testing. The marginal likelihood provides an
elegant mechanism to select between fixed hypotheses, even
if each hypothesis is entirely consistent with our observa-
tions, and the prior odds of these hypotheses are equal. For
example, in the early twentieth century, it was believed that
the correct explanation for the irregularities in Mercury’s
orbit was either an undiscovered planet, orbital debris, or
a modification to Newtonian gravity, but not general rela-
tivity. Since the predictions of general relativity are unable
to explain other possible orbital trajectories, and thus easy
to falsify, but consistent with Mercury’s orbit, Jefferys and
Berger (1991) show it has a significantly higher marginal
likelihood than the alternatives. We emphasize here we are
comparing fixed prior hypotheses. We are not interested
in how parameters of general relativity update based on or-
bital data, and then deciding whether the updated general
relativity is the correct description of orbital trajectories.

Hyperparameter Learning. In practice, the LML is of-
ten used to learn hyperparameters of the prior to find
argmaxθp(D|θ) where p(D|θ) =

∫
p(D|w)p(w|θ). Gaus-

sian processes (GPs) provide a particularly compelling
demonstration of LML hyperparameter learning. The LML
does not prefer a small RBF length-scale that would opti-
mize the data fit. Instead, as we show empirically in Figure
21 (Appendix), the LML chooses a value that would make
the distribution over functions likely to generate the training
data. We note that the LML can be used to learn many such
kernel parameters (Rasmussen and Williams, 2006; Wilson
and Adams, 2013; Wilson et al., 2016a). Since we can take
gradients of the LML with respect to these hypers using
only training data, the LML can also be used where cross-
validation would suffer from a curse of dimensionality.

Constraint Learning. Typical learning objectives like
maximum likelihood are never incentivized to select for
constraints, because a constrained model will be a special
case of a more flexible model that is more free to increase
likelihood. The LML, on the other hand, can provide a
consistent estimator for such constraints, automatically se-
lecting the most constrained solution that fits the data, and
collapsing to the true value of the constraint in the limit of
infinite observations, from training data alone. Bayesian
PCA is a clear example of LML constraint learning (Minka,
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which trained model will generalize best; (4) We also show
that LML optimization can lead to underfitting or overfitting
in function space; (5) We show the recent characterization
in Lyle et al. (2020) that “models which train faster will
obtain a higher LML” is not generally true, and revisit the
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show that in modern deep learning, the Laplace LML is
not well-suited for architecture search and hyperparameter
learning despite its recent use; (7) We study a conditional
LML (CLML), related to the metrics in Berger and Pericchi
(1996) and Fong and Holmes (2020), but with a different
rationale and application. We are the first to consider the
CLML for hyperparameter learning, model selection for
neural networks, approximate inference, and classification.
We also do not consider prior sensitivity a drawback of
the LML, but argue instead that the LML is answering a
fundamentally different question than whether a trained
model provides good generalization, and contrast this set-
ting with hypothesis testing. Compared to cross-validation,
the CLML can more scalable and can be conveniently used
to learn thousands of hyperparameters.

3. The Case for the Marginal Likelihood
While we are primarily focused on exploring the limitations
of the marginal likelihood, we emphasize that the marginal
likelihood distinctively addresses foundational questions in
hypothesis testing and constraint learning. By encoding a
notion of Occam’s razor, the marginal likelihood can out-
perform cross-validation, without intervention and using
training data alone. Since we can directly take gradients
of the marginal likelihood with respect to hyperparameters
on the training data, it can also be applied where standard
cross-validation cannot, for computational reasons.

Definition. The marginal likelihood is the probability that
we would generate a dataset D with a model M if we
randomly sample from a prior over its parameters p(w):
p(D|M) =

∫
p(D|M, w)p(w|M)dw. It is named the

marginal likelihood, because it is a likelihood formed
from marginalizing parameters w. It is also known as
the Bayesian evidence. Maximizing the marginal likeli-
hood is sometimes referred to as empirical Bayes, type-
II maximum likelihood estimation, or maximizing the evi-
dence. We can also decompose the marginal likelihood as
p(D|M) =

∏n
i p(Di|D<i,M), where it can equivalently

be understood as how good the model is at predicting each
data point in sequence given every data point before it.

Occam factors. In the definition of the marginal likeli-
hood, the argument of the integral is p(w|D,M) up to a
constant of proportionality. If we assume the posterior is
relatively concentrated around ŵ = argmaxwp(w|D,M),
then we can perform a rectangular approximation of the
integral, as the height of the posterior times its width, σw|D,

to find p(D|M) ≈ p(D|ŵ,M) · σw|D
σw

, where p(D|ŵ,M)

is the data fit and σw|D
σw

is the Occam factor — the width
of the posterior over the width of the prior. If the posterior
contracts significantly from the prior, there will be a large
Occam penalty, leading to a low LML.

Occam’s Razor. The marginal likelihood automatically
encapsulates a notion of Occam’s razor, as in Figure 1(c).
If a model can only generate a small number of datasets,
it will generate those datasets with high probability, since
the marginal likelihood is a normalized probability density.
By the same reasoning, a model which can generate many
datasets cannot assign significant probability density to all
of them. For a given dataset, the marginal likelihood will
automatically favour the most constrained model that is
consistent with the data. For example, suppose we have
f1(x,w) = w1x, and f2(x,w) =

∑100
i=1 wix

i, with p(w) =
N (0, I) in both cases, and data given by a straight line with
a particular slope. Both models have parameters consistent
with the data, yet the first model is significantly more likely
to generate this dataset from its prior over functions.

Hypothesis Testing. The marginal likelihood provides an
elegant mechanism to select between fixed hypotheses, even
if each hypothesis is entirely consistent with our observa-
tions, and the prior odds of these hypotheses are equal. For
example, in the early twentieth century, it was believed that
the correct explanation for the irregularities in Mercury’s
orbit was either an undiscovered planet, orbital debris, or
a modification to Newtonian gravity, but not general rela-
tivity. Since the predictions of general relativity are unable
to explain other possible orbital trajectories, and thus easy
to falsify, but consistent with Mercury’s orbit, Jefferys and
Berger (1991) show it has a significantly higher marginal
likelihood than the alternatives. We emphasize here we are
comparing fixed prior hypotheses. We are not interested
in how parameters of general relativity update based on or-
bital data, and then deciding whether the updated general
relativity is the correct description of orbital trajectories.

Hyperparameter Learning. In practice, the LML is of-
ten used to learn hyperparameters of the prior to find
argmaxθp(D|θ) where p(D|θ) =

∫
p(D|w)p(w|θ)dw.

Gaussian processes (GPs) provide a particularly compelling
demonstration of LML hyperparameter learning. The LML
does not prefer a small RBF length-scale that would opti-
mize the data fit. Instead, as we show empirically in Figure
22 (Appendix), the LML chooses a value that would make
the distribution over functions likely to generate the training
data. We note that the LML can be used to learn many such
kernel parameters (Rasmussen and Williams, 2006; Wilson
and Adams, 2013; Wilson et al., 2016a). Since we can take
gradients of the LML with respect to these hypers using
only training data, the LML can also be used where cross-
validation would suffer from a curse of dimensionality.
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Figure 1. Pitfalls of marginal likelihood. (a): Prior B is vague, but contains easily identifiable solutions and quickly collapses to
posterior D after observing a small number of datapoints. Prior A describes the data better than prior B, but posterior D describes the
data better than posterior B. The marginal likelihood will prefer model A, but model C generalizes better. (b): Example of misalignment
between marginal likelihood and generalization. The marginal likelihood will pick prior scale b, and not include the best solution
w∗, leading to suboptimal generalization performance. (c): The complex model spreads its mass thinly on a broad support, while the
appropriate model concentrates its mass on a particular class of problems. The overfit model is a δ-distribution on the target dataset D̂.

2001). Suppose the data are generated from a linear sub-
space, plus noise. While maximum likelihood always selects
for the largest possible subspace dimensionality, and cross-
validation tends to be cumbersome and inaccurate, the LML
provides a consistent and practically effective estimator for
the true dimensionality.

4. Pitfalls of the Marginal Likelihood
We now discuss general conceptual challenges in working
with the marginal likelihood, and present the conditional
marginal likelihood as a partial remedy. The remainder of
this paper concretely exemplifies each of these challenges.

4.1. Marginal Likelihood is not Generalization

The marginal likelihood answers the question “what is the
probability that a prior model generated the training data?”.
This question is subtly different from asking “how likely
is the posterior, conditioned on the training data, to have
generated withheld points drawn from the same distribu-
tion?”. Although the marginal likelihood is often used as a
proxy for generalization (e.g. MacKay, 1992c; Immer et al.,
2021; Daxberger et al., 2021), it is the latter question we
wish to answer in deciding whether a model will provide
good generalization performance.

Indeed, if after observing data, prior A leads to posterior
B, and prior C leads to posterior D, it can be the case that
the same data are less probable under B than D, and also
that D provides better generalization on fresh points from
the same distribution, even if the prior A explains the data
better than C. Consider, for example, the situation where
we have a prior over a diffuse set of solutions which are
easily identifiable from the data. We will then observe sig-
nificant posterior contraction, as many of these solutions
provide poor likelihood. While the marginal likelihood
will be poor, the posterior could be perfectly reasonable for
making predictions: in the product decomposition of the

marginal likelihood in Section 3, the first terms will have
low probability density, even if the posterior updates quickly
to become a good description of the data. A different prior,
which allocates significant mass to moderately consistent
solutions, could then give rise to a much higher marginal
likelihood, but a posterior which provides poorer general-
ization. We illustrate this effect in Figure 1(a) and provide
concrete examples in Section 5.

There are several ways of understanding why the marginal
likelihood will be poor in this instance: (1) the diffuse
prior is unlikely to generate the data we observe, since it
allocates significant mass to generating other datasets; (2)
we pay a significant Occam factor penalty, which is the
width of the posterior over the width of the prior, in the
posterior contraction; (3) in the product decomposition of
the marginal likelihood in Section 3, the first terms will have
low probability density, even if the posterior updates quickly
to become a good description of the data.

Model Selection. In hypothesis testing, our interest is in
evaluating priors, whereas in model selection we wish to
evaluate posteriors. In other words, in model selection we
are not interested in a fixed hypothesis class A correspond-
ing to a prior (such as the theory of general relativity in
the example of Section 3), but instead the posterior B that
arises whenA is combined with data. Marginal likelihood is
answering the question most pertinent to hypothesis testing,
but is not generally well-aligned with model selection. We
provide several examples in Sections 5, 6.

4.2. Marginal Likelihood Optimization and Overfitting

Marginal likelihood optimization for hyperparameter learn-
ing, also known as type-II maximum likelihood or empirical
Bayes, is a special case of model selection. In this setting,
we are typically comparing between many models — of-
ten a continuous spectrum of models — corresponding to
different hyperparameter settings. In practice the marginal
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Constraint Learning. Typical learning objectives like
maximum likelihood are never incentivized to select for
constraints, because a constrained model will be a special
case of a more flexible model that is more free to increase
likelihood. The LML, on the other hand, can provide a
consistent estimator for such constraints, automatically se-
lecting the most constrained solution that fits the data, and
collapsing to the true value of the constraint in the limit of
infinite observations, from training data alone. Bayesian
PCA is a clear example of LML constraint learning (Minka,
2001). Suppose the data are generated from a linear sub-
space, plus noise. While maximum likelihood always selects
for the largest possible subspace dimensionality, and cross-
validation tends to be cumbersome and inaccurate, the LML
provides a consistent and practically effective estimator for
the true dimensionality. Another clear example is in auto-
matically learning symmetries, such as rotation invariance
(van der Wilk et al., 2018).

4. Pitfalls of the Marginal Likelihood
We now discuss general conceptual challenges in working
with the marginal likelihood, and present the conditional
marginal likelihood as a partial remedy. The remainder of
this paper concretely exemplifies each of these challenges.

4.1. Marginal Likelihood is not Generalization

The marginal likelihood answers the question “what is the
probability that a prior model generated the training data?”.
This question is subtly different from asking “how likely
is the posterior, conditioned on the training data, to have
generated withheld points drawn from the same distribu-
tion?”. Although the marginal likelihood is often used as a
proxy for generalization (e.g. MacKay, 1992c; Immer et al.,
2021; Daxberger et al., 2021), it is the latter question we
wish to answer in deciding whether a model will provide
good generalization performance.

Indeed, if after observing data, prior A leads to posterior
B, and prior C leads to posterior D, it can be the case that
the same data are less probable under B than D, and also
that D provides better generalization on fresh points from
the same distribution, even if the prior A explains the data
better than C. Consider, for example, the situation where
we have a prior over a diffuse set of solutions which are
easily identifiable from the data. We will then observe sig-
nificant posterior contraction, as many of these solutions
provide poor likelihood. While the marginal likelihood
will be poor, the posterior could be perfectly reasonable for
making predictions: in the product decomposition of the
marginal likelihood in Section 3, the first terms will have
low probability density, even if the posterior updates quickly
to become a good description of the data. A different prior,
which allocates significant mass to moderately consistent
solutions, could then give rise to a much higher marginal
likelihood, but a posterior which provides poorer general-
ization. We illustrate this effect in Figure 1(a) and provide
concrete examples in Section 5.

There are several ways of understanding why the marginal
likelihood will be poor in this instance: (1) the diffuse
prior is unlikely to generate the data we observe, since it
allocates significant mass to generating other datasets; (2)
we pay a significant Occam factor penalty, which is the
width of the posterior over the width of the prior, in the
posterior contraction; (3) in the product decomposition of
the marginal likelihood in Section 3, the first terms will have
low probability density, even if the posterior updates quickly
to become a good description of the data.

Model Selection. In hypothesis testing, our interest is in
evaluating priors, whereas in model selection we wish to
evaluate posteriors. In other words, in model selection we
are not interested in a fixed hypothesis class A correspond-
ing to a prior (such as the theory of general relativity in
the example of Section 3), but instead the posterior B that
arises whenA is combined with data. Marginal likelihood is
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likelihood can be effective for tuning hyperparameters, as
discussed in Section 3. However, marginal likelihood opti-
mization can be prone to both underfitting and overfitting.

Overfitting by ignoring uncertainty. We can overfit the
marginal likelihood, as we can overfit the likelihood. Indeed,
a likelihood for one model can always be seen as a marginal
likelihood for another model. For example, suppose we in-
clude in our search space a prior model concentrated around
a severely overfit maximum likelihood solution. Such a
model would be “simple” in that it is extremely constrained
— it can essentially only generate the dataset under consider-
ation — and would thus achieve high marginal likelihood,
but would provide poor generalization (Figure 1(c)).
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Figure 2. LML overfitting in Gaussian Processes. Left: A fit
of a GP regression model with a constant prior mean. Right: a
prior mean parameterized with an MLP and trained via marginal
likelihood optimization. Train data is shown with circles, test
data is shown with crosses and the shaded region visualizes the
2σ-predictive region of the GP. Given enough flexibility with the
prior mean, the marginal likelihood overfits the data, providing
poor overconfident predictions outside of the train region.

As an example, we parameterize the mean function in an
RBF GP with a small multi-layer perceptron (MLP) and
learn the parameters of the MLP by optimizing the LML.
We show the results in Figure 2, where the learned mean
function overfits the train data, leading to poor and overcon-
fident predictions outside of the train region. We note that
the mean of a GP does not appear in the Occam factor of the
marginal likelihood. Therefore the Occam factor does not
directly influence neural network hyperparameter learning
in this instance, which is different from deep kernel learn-
ing (Wilson et al., 2016b). We provide additional details in
Appendix C.

While it may not appear surprising that we can overfit the
marginal likelihood, the narratives relating the marginal like-
lihood to Occam’s razor often give the impression that it
is safe to expand our model search, and that by favouring
a “constrained model”, we are protected from conventional
overfitting. For example, Iwata and Ghahramani (2017)
proposed a model analogous to the example in Figure 2.
where a neural network serves as a mean function of a GP
and argued that “since the proposed method is based on
Bayesian inference, it can help alleviate overfitting”. Fur-
thermore, MacKay (1992c, Chapter 3.4) argues that if the
correlation between the marginal likelihood and generaliza-
tion is poor for a set of models under consideration, then

we should expand our search to find new model structures
that can achieve better marginal likelihood. While a mis-
match between generalization and marginal likelihood can
indicate that we should revisit our modelling assumptions,
this advice could easily lead to overfitting.

Underfitting in hyperparameter selection. The above
example involves overfitting that arises by ignoring uncer-
tainty. The marginal likelihood also has a bias towards
underfitting. This bias arises because supporting a good
solution could involve also supporting many solutions that
are unlikely to generate the training data from the prior. As
an example, consider a zero-centred Gaussian prior on a set
of parameters, p(w) = N (0, σ2I). Now suppose the pa-
rameters w? that provide the best generalization have large
norm, ‖w?‖, but there are several settings of the parameters
that provide moderate fits to the data with smaller norms
b � ‖w?‖. Further suppose that parameters with norms
b < ‖w‖ < ‖w?‖ provide very poor fits to the data. The
marginal likelihood will not favour a large value of σ that
makes w? likely under the prior — even though such a value
could lead to a posterior with much better generalization, as
in Figure 1(b). With more data, the likelihood signal for w?

will dominate, and the underfitting bias disappears.

4.3. Laplace Approximation in Deep Learning

Outside of a few special cases, such as Gaussian process
regression, the marginal likelihood is intractable. Because
the marginal likelihood is integrating with the respect to
the prior, and we thus cannot effectively perform simple
Monte Carlo, it is also much harder to approximate than
the posterior predictive distribution. Moreover, modern neu-
ral networks contain millions of parameters, leaving few
practical options. The Laplace approximation (LA) for
model selection in Bayesian neural networks was originally
proposed by MacKay (1992c), and has recently seen a resur-
gence of popularity (e.g. Immer et al., 2021). Moreover,
several generalization metrics, such as the Aikake Informa-
tion Criterion (AIC) and Bayesian Information Criterion
(BIC), can be derived by further approximating the Laplace
approximate marginal likelihood (Bishop, 2006a).

The Laplace approximation represents the parameter poste-
rior with a Gaussian distribution centred at a local optima
of the posterior, wMAP, with covariance matrix given by the
inverse Hessian at wMAP.

Drawbacks of the Laplace approximation. The actual
posterior distribution for a modern neural network is highly
multimodal. By representing only a single mode, the
Laplace approximation provides a poor representation of
the true Occam factor, which is the posterior volume di-
vided by the prior volume. As a consequence, the Laplace
marginal likelihood will overly penalize diffuse priors that
capture multiple reasonable parameter settings across differ-
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answering the question most pertinent to hypothesis testing,
but is not generally well-aligned with model selection. We
provide several examples in Sections 5, 6.

4.2. Marginal Likelihood Optimization and Overfitting

Marginal likelihood optimization for hyperparameter learn-
ing, also known as type-II maximum likelihood or empirical
Bayes, is a special case of model selection. In this setting,
we are typically comparing between many models — of-
ten a continuous spectrum of models — corresponding to
different hyperparameter settings. In practice the marginal
likelihood can be effective for tuning hyperparameters, as
discussed in Section 3. However, marginal likelihood opti-
mization can be prone to both underfitting and overfitting.

Overfitting by ignoring uncertainty. We can overfit the
marginal likelihood, as we can overfit the likelihood. Indeed,
a likelihood for one model can always be seen as a marginal
likelihood for another model. For example, suppose we in-
clude in our search space a prior model concentrated around
a severely overfit maximum likelihood solution. Such a
model would be “simple” in that it is extremely constrained
— it can essentially only generate the dataset under consider-
ation — and would thus achieve high marginal likelihood,
but would provide poor generalization (Figure 1(c)).
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Figure 2. LML overfitting in Gaussian Processes. Left: A fit
of a GP regression model with a constant prior mean. Right: a
prior mean parameterized with an MLP and trained via marginal
likelihood optimization. Train data is shown with circles, test
data is shown with crosses and the shaded region visualizes the
2σ-predictive region of the GP. Given enough flexibility with the
prior mean, the marginal likelihood overfits the data, providing
poor overconfident predictions outside of the train region.

As an example, we parameterize the mean function in an
RBF GP with a small multi-layer perceptron (MLP) and
learn the parameters of the MLP by optimizing the LML.
We show the results in Figure 2, where the learned mean
function overfits the train data, leading to poor and overcon-
fident predictions outside of the train region. We note that
the mean of a GP does not appear in the Occam factor of the
marginal likelihood. Therefore the Occam factor does not
directly influence neural network hyperparameter learning
in this instance, which is different from deep kernel learn-
ing (Wilson et al., 2016b). We provide additional details in
Appendix C.

While it may not appear surprising that we can overfit the

marginal likelihood, the narratives relating the marginal like-
lihood to Occam’s razor often give the impression that it
is safe to expand our model search, and that by favouring
a “constrained model”, we are protected from conventional
overfitting. For example, Iwata and Ghahramani (2017)
proposed a model analogous to the example in Figure 2.
where a neural network serves as a mean function of a GP
and argued that “since the proposed method is based on
Bayesian inference, it can help alleviate overfitting”. Fur-
thermore, MacKay (1992c, Chapter 3.4) argues that if the
correlation between the marginal likelihood and generaliza-
tion is poor for a set of models under consideration, then
we should expand our search to find new model structures
that can achieve better marginal likelihood. While a mis-
match between generalization and marginal likelihood can
indicate that we should revisit our modelling assumptions,
this advice could easily lead to overfitting.

Underfitting in hyperparameter selection. The above
example involves overfitting that arises by ignoring uncer-
tainty. The marginal likelihood also has a bias towards
underfitting. This bias arises because supporting a good
solution could involve also supporting many solutions that
are unlikely to generate the training data from the prior. As
an example, consider a zero-centred Gaussian prior on a set
of parameters, p(w) = N (0, σ2I). Now suppose the pa-
rameters w? that provide the best generalization have large
norm, ‖w?‖, but there are several settings of the parameters
that provide moderate fits to the data with smaller norms
b � ‖w?‖. Further suppose that parameters with norms
b < ‖w‖ < ‖w?‖ provide very poor fits to the data. The
marginal likelihood will not favour a large value of σ that
makes w? likely under the prior — even though such a value
could lead to a posterior with much better generalization, as
in Figure 1(b). With more data, the likelihood signal for w?

will dominate, and the underfitting bias disappears.

4.3. Laplace Approximation in Deep Learning

Outside of a few special cases, such as Gaussian process
regression, the marginal likelihood is intractable. Because
the marginal likelihood is integrating with the respect to
the prior, and we thus cannot effectively perform simple
Monte Carlo, it is also much harder to approximate than
the posterior predictive distribution. Moreover, modern neu-
ral networks contain millions of parameters, leaving few
practical options. The Laplace approximation (LA) for
model selection in Bayesian neural networks was originally
proposed by MacKay (1992c), and has recently seen a resur-
gence of popularity (e.g. Immer et al., 2021). Moreover,
several generalization metrics, such as the Aikake Informa-
tion Criterion (AIC) and Bayesian Information Criterion
(BIC), can be derived by further approximating the Laplace
approximate marginal likelihood (Bishop, 2006a).
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Figure 3. Laplace approximation. Model x ∼ N (sin(w), 1)
with a uniform prior w ∼ U [−α, α]. (Left): Posterior density and
a Laplace approximation to the posterior (scaled for visualization);
(Right): True marginal likelihood and the Laplace estimate as a
function of α. As Laplace only captures a single mode, the Laplace
estimate of marginal likelihood decreases linearly with α while
the true marginal likelihood is roughly constant.

ent modes. We provide an example in Figure 3, with further
details in Appendix A.

Laplace is also highly sensitive to the number of parame-
ters in the model, as we show in Section 6. We note the
ELBO used in variational inference suffers from the same
drawbacks. We provide further details in Appendices A, B.

4.4. The Conditional Marginal Likelihood

Using the product decomposition of the marginal likelihood
(see Section 3), we can write the LML as log p(D|M) =∑n

i=1 log p(Di|D<i,M). Each term log p(Di|D<i,M) is
the predictive log-likelihood of the data point Di under the
Bayesian model average after observing the data D<i. The
terms for i close to n are clearly indicative of generalization
of the model to new test data: we train on the available data,
and test on the remaining, unseen data. On the other hand,
the terms corresponding to small i have an equally large
effect on the marginal likelihood, but may have little to do
with generalization.

Inspired by the reasoning above, we consider
the conditional log marginal likelihood (CLML):∑n
i=m log p(Di|D<i,M) = log p(D≥m|D<m), where

m ∈ {1, . . . , n} is the cut-off number, and D≥m is the
set of datapoints Dm, . . . ,Dn. In CLML, we simply
drop the first m − 1 terms of the LML decomposition, to
obtain a metric that is more aligned with generalization.
In Appendix D, we provide further details on the CLML,
including a permutation-invariant version, and study
how performance varies with the choice of m in Figure
23 (Appendix K). We note the CML can be written as∫
p(Dm:n|w)p(w|D1:m−1)dw, and thus can be more easily

estimated by Monte Carlo sampling than the LML, since
samples from the posterior over m− 1 points will typically
have much greater likelihood than samples from the prior.

Variants of the CLML were considered in Berger and Per-
icchi (1996) as an intrinsic Bayes factor for handling im-
proper uniform priors in hypothesis testing, and Fong and

Holmes (2020) to show a connection with cross-validation
and reduce the sensitivity to the prior. Our rationale and
applications are different, motivated by understanding how
the marginal likelihood can be fundamentally misaligned
with generalization, with applications in neural architecture
comparison, hyperparameter learning, and transfer learn-
ing. We expect the CLML to address the issues we have
presented in this section, with the exception of overfitting,
since CLML optimization is still fitting to withheld points.
For hyperparameter optimization, we expect the CLML to
be at its best relative to the LML for small datasets. As
in Figure 1(b), the LML suffers because it has to assign
mass to parameters that are unlikely to generate the data in
order to reach parameters that are likely to generate the data.
But as we get more data, the likelihood signal for the good
parameters becomes overwhelming, and the marginal likeli-
hood selects a reasonable value. Even for small datasets, the
CLML is more free to select parameters that provide good
generalization, since it is based on the posterior p(w|D<m)
that is re-centred from the prior, as shown in Figure 1(b).

5. Training Speed and Learning Curves
How a model updates based on new information is a crucial
factor determining its generalization properties. We will
explore this behaviour with learning curves — graphs show-
ing how log p(Dn|D<n) changes as a function of n. The
LML can be thought of as the area under the learning curve
(Lyle et al., 2020). We will see that the first few terms in the
learning curve corresponding to small n often decide which
model is preferred by the LML. These terms are typically
maximized by small, inflexible models, biasing the LML
towards underfitting. We illustrate this behaviour in Figure
1(a): the marginal likelihood penalizes models with vague
priors, even if after observing a few datapoints the posterior
collapses, and generalizes well to the remaining datapoints.

Density Estimation. Consider the process where x is gen-
erated from a Gaussian distribution N (u, 1) and the mean
parameter is in turn generated from a Gaussian distribution
u ∼ N (µ, σ2). Figure 4(a) shows the LML and the test pre-
dictive log likelihood as a function of the prior variance σ2.
The posterior over u and the predictive distribution are stable
above a threshold of the prior variance σ2, as the likelihood
of the training data constrains the model and outweighs the
increasingly weak prior. However, as we increase σ2, the
training data becomes increasingly unlikely according to the
prior, so the marginal likelihood sharply decreases with σ2.
We provide analytical results in Appendix G.

A direct consequence of this behaviour is that two models
may have the same generalization performance but very
different values of the marginal likelihood; or worse, the
marginal likelihood might favor a model with a poor gener-
alization performance. We can see this effect in Figure 4(b),
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Figure 3. Laplace approximation. Model x ∼ N (sin(w), 1)
with a uniform prior w ∼ U [−α, α]. (Left): Posterior density and
a Laplace approximation to the posterior (scaled for visualization);
(Right): True marginal likelihood and the Laplace estimate as a
function of α. As Laplace only captures a single mode, the Laplace
estimate of marginal likelihood decreases linearly with α while
the true marginal likelihood is roughly constant.

The Laplace approximation represents the parameter poste-
rior with a Gaussian distribution centred at a local optima
of the posterior, wMAP, with covariance matrix given by the
inverse Hessian at wMAP.

Drawbacks of the Laplace approximation. The actual
posterior distribution for a modern neural network is highly
multimodal. By representing only a single mode, the
Laplace approximation provides a poor representation of
the true Occam factor, which is the posterior volume di-
vided by the prior volume. As a consequence, the Laplace
marginal likelihood will overly penalize diffuse priors that
capture multiple reasonable parameter settings across dif-
ferent modes. We provide an example in Figure 3, with
further details in Appendix A. Laplace is also highly sensi-
tive to the number of parameters in the model, as we show
in Section 6.

We note the ELBO used in variational inference suffers
from the same drawbacks. We provide further details in
Appendices A, B.

4.4. The Conditional Marginal Likelihood

Using the product decomposition of the marginal likelihood
(see Section 3), we can write the LML as log p(D|M) =∑n

i=1 log p(Di|D<i,M). Each term log p(Di|D<i,M) is
the predictive log-likelihood of the data point Di under the
Bayesian model average after observing the data D<i. The
terms for i close to n are clearly indicative of generalization
of the model to new test data: we train on the available data,
and test on the remaining, unseen data. On the other hand,
the terms corresponding to small i have an equally large
effect on the marginal likelihood, but may have little to do
with generalization.

Inspired by the reasoning above, we consider
the conditional log marginal likelihood (CLML):∑n
i=m log p(Di|D<i,M) = log p(D≥m|D<m), where

m ∈ {1, . . . , n} is the cut-off number, and D≥m is the
set of datapoints Dm, . . . ,Dn. In CLML, we simply

drop the first m − 1 terms of the LML decomposition, to
obtain a metric that is more aligned with generalization.
In Appendix D, we provide further details on the CLML,
including a permutation-invariant version, and study
how performance varies with the choice of m in Figure
24 (Appendix K). We note the CML can be written as∫
p(Dm:n|w)p(w|D1:m−1)dw, and thus can be more easily

estimated by Monte Carlo sampling than the LML, since
samples from the posterior over m− 1 points will typically
have much greater likelihood than samples from the prior.

Variants of the CLML were considered in Berger and Per-
icchi (1996) as an intrinsic Bayes factor for handling im-
proper uniform priors in hypothesis testing, and Fong and
Holmes (2020) to show a connection with cross-validation
and reduce the sensitivity to the prior. Our rationale and
applications are different, motivated by understanding how
the marginal likelihood can be fundamentally misaligned
with generalization. We do not consider prior sensitivity
a deficiency of the marginal likelihood, since the marginal
likelihood is evaluating the probability the data were gen-
erated from the prior. We also are the first to consider the
CLML for neural architecture comparison, hyperparameter
learning, approximate inference, and transfer learning. We
expect the CLML to address the issues we have presented in
this section, with the exception of overfitting, since CLML
optimization is still fitting to withheld points. For hyperpa-
rameter optimization, we expect the CLML to be at its best
relative to the LML for small datasets. As in Figure 1(b), the
LML suffers because it has to assign mass to parameters that
are unlikely to generate the data in order to reach parameters
that are likely to generate the data. But as we get more data,
the likelihood signal for the good parameters becomes over-
whelming, and the marginal likelihood selects a reasonable
value. Even for small datasets, the CLML is more free to
select parameters that provide good generalization, since it
is based on the posterior p(w|D<m) that is re-centred from
the prior, as shown in Figure 1(b).

5. Training Speed and Learning Curves
How a model updates based on new information is a crucial
factor determining its generalization properties. We will
explore this behaviour with learning curves — graphs show-
ing how log p(Dn|D<n) changes as a function of n. The
LML can be thought of as the area under the learning curve
(Lyle et al., 2020). We will see that the first few terms in the
learning curve corresponding to small n often decide which
model is preferred by the LML. These terms are typically
maximized by small, inflexible models, biasing the LML
towards underfitting. We illustrate this behaviour in Figure
1(a): the marginal likelihood penalizes models with vague
priors, even if after observing a few datapoints the posterior
collapses, and generalizes well to the remaining datapoints.
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Figure 4. Training speed and learning curves. (a): The prior variance continues to affect the marginal likelihood as its value increases
whereas the test predictive distribution becomes insensitive to its value starting at a certain threshold. (b): WhileM1 andMMML

provide identical fits of the data, LML favorsMMML. Moreover, LML prefers the modelM2 with a poor data fit toM1. (c):M1 trains
faster thanM2, but has a worse LML thanM2. (d):M9 provides a better fit after observing 60 datapoints, but the LML prefersM3

until n = 297. The modelM9c provides a near-identical fit toM9 after observing 50 datapoints, but is preferred by the LML. (e): Data
fit forM3,M9 andM9c.M3 undefits, while the other two models get identical fits.

where the predictive distributions ofM1 and the maximum
marginal likelihood (MML) model MMML almost coin-
cide, but the LML values are very different. Moreover, we
can design a third model,M2, with a prior variance 0.07
and prior mean 2 which leads to a poor fit of the data but
achieves higher marginal likelihood thanM1. This simple
example illustrates the general point presented in Section
4.1: LML measures the likelihood of the data according to
the prior, which can be very different from the generalization
performance of the corresponding posterior.

In Figure 4(c) we show log p(Dn|D<n) as a function of n,
averaged over 100 orderings of the data. We see thatM1

trains faster thanM2 — where the training speed is defined
by Lyle et al. (2020) as “the number of data points required
by a model to form an accurate posterior” — but achieves a
lower LML, contradicting recent claims that “models which
train faster will obtain a higher LML” (Lyle et al., 2020).
These claims seem to implicitly rely on the assumption that
all models start from the same log p(D1|M), which is not
true in general as we demonstrate in Figure 4(c).

Fourier Model. Consider the Fourier model f(x, a, b) =∑D
d=1 ad sin(d·x)+bd cos(d·x),where {ad, bd}Dd=1 are the

parameters of the model, andD is the order of the model. To
generate the data, we use a model of order D = 9. We sam-
ple the model parameters âd, b̂d ∼ N (0, (1/d2)2). We sam-
ple 100 data points x ∼ Uniform[0, 1], and compute the cor-
responding y = f(x, â, b̂) + ε, with noise ε ∼ N (0, 0.12).
We then compare an order-9 model M9 and an order-3
M3 model on this dataset using LML and CLML. For both
models, we use the prior p(ad) = p(bd) = N (0, 1). Note
that the M9 model includes ground truth, while the M3

model does not. We show the fit for both models in Figure
4(e) (top and middle). M9 provides a much better fit of
the true function, while M3 finds an overly simple solu-
tion. However, the LML strongly prefers the simplerM3

model, which achieves a value of 53.8 compared to 28.9 for

the modelM9. We additionally evaluate the CLML using
200 random orders and conditioning on m = 85 datapoints.
CLML strongly prefers the flexibleM9 model with a value
of 28.9 compared to 11.45 forM3.

We can understand the behaviour of LML and CLML by ex-
amining the decomposition of LML into a sum over data and
Figure 1(a). In Figure 4(d) we plot the terms log p(Dn|D<n)
of the decomposition as a function of n, averaged over 200
orderings of the data. For n > 50 observed datapoints, the
more flexible modelM9 achieves a better generalization
log-likelihood log p(Dn|D<n). However, for small n the
simpler M3 model achieves better generalization, where
the difference betweenM3 andM9 is more pronounced.
As a result, LML prefers the simplerM3 for up to n = 297
datapoints! For n ∈ [50, 296] the LML picks the model with
suboptimal generalization performance. We can achieve the
best of both worlds with the corrected modelM9c with the
parameter prior ad, bd ∼ N (0, (1/d2)2): strong generaliza-
tion performance both for small and large training dataset
sizes n. For further details, please see Appendix E.

Neural Networks. We show the rank of 6 different neu-
ral network architectures on their BMA test accuracy on
CIFAR-10 for different dataset sizes in Figure 10(b) (Ap-
pendix). We see that DenseNet121 and GoogLeNet train
faster than ResNet-18 and VGG19, but rank worse with
more data. In Figure 10(a) (Appendix), we show the correla-
tion of the BMA test log-likelihood with the LML is positive
for small datasets and negative for larger datasets, whereas
the correlation with the CLML is consistently positive. Fi-
nally, Figure 10(a) (Appendix) shows that the Laplace LML
heavily penalizes the number of parameters, as in Sec-
tion 4.3. We provide additional details in Appendix F.

Summary. In contrast with Lyle et al. (2020), we find
that models that train faster do not necessarily have higher
marginal likelihood, or better generalization. Indeed, the
opposite can be true: fast training is associated with rapid
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Figure 4. Training speed and learning curves. (a): The prior variance continues to affect the marginal likelihood as its value increases
whereas the test predictive distribution becomes insensitive to its value starting at a certain threshold. (b): WhileM1 andMMML

provide identical fits of the data, LML favorsMMML. Moreover, LML prefers the modelM2 with a poor data fit toM1. (c):M1 trains
faster thanM2, but has a worse LML thanM2. (d):M9 provides a better fit after observing 60 datapoints, but the LML prefersM3

until n = 297. The modelM9c provides a near-identical fit toM9 after observing 50 datapoints, but is preferred by the LML. (e): Data
fit forM3,M9 andM9c.M3 undefits, while the other two models get identical fits.

Density Estimation. Consider the process where x is gen-
erated from a Gaussian distribution N (u, 1) and the mean
parameter is in turn generated from a Gaussian distribution
u ∼ N (µ, σ2). Figure 4(a) shows the LML and the test pre-
dictive log likelihood as a function of the prior variance σ2.
The posterior over u and the predictive distribution are stable
above a threshold of the prior variance σ2, as the likelihood
of the training data constrains the model and outweighs the
increasingly weak prior. However, as we increase σ2, the
training data becomes increasingly unlikely according to the
prior, so the marginal likelihood sharply decreases with σ2.
We provide analytical results in Appendix G.

A direct consequence of this behaviour is that two models
may have the same generalization performance but very
different values of the marginal likelihood; or worse, the
marginal likelihood might favor a model with a poor gener-
alization performance. We can see this effect in Figure 4(b),
where the predictive distributions ofM1 and the maximum
marginal likelihood (MML) model MMML almost coin-
cide, but the LML values are very different. Moreover, we
can design a third model,M2, with a prior variance 0.07
and prior mean 2 which leads to a poor fit of the data but
achieves higher marginal likelihood thanM1. This simple
example illustrates the general point presented in Section
4.1: LML measures the likelihood of the data according to
the prior, which can be very different from the generalization
performance of the corresponding posterior.

In Figure 4(c) we show log p(Dn|D<n) as a function of n,
averaged over 100 orderings of the data. We see thatM1

trains faster thanM2 — where the training speed is defined
by Lyle et al. (2020) as “the number of data points required
by a model to form an accurate posterior” — but achieves a
lower LML, contradicting recent claims that “models which
train faster will obtain a higher LML” (Lyle et al., 2020).
These claims seem to implicitly rely on the assumption that
all models start from the same log p(D1|M), which is not

true in general as we demonstrate in Figure 4(c).

Fourier Model. Consider the Fourier model f(x, a, b) =∑D
d=1 ad sin(d·x)+bd cos(d·x),where {ad, bd}Dd=1 are the

parameters of the model, andD is the order of the model. To
generate the data, we use a model of order D = 9. We sam-
ple the model parameters âd, b̂d ∼ N (0, (1/d2)2). We sam-
ple 100 data points x ∼ Uniform[0, 1], and compute the cor-
responding y = f(x, â, b̂) + ε, with noise ε ∼ N (0, 0.12).
We then compare an order-9 model M9 and an order-3
M3 model on this dataset using LML and CLML. For both
models, we use the prior p(ad) = p(bd) = N (0, 1). Note
that the M9 model includes ground truth, while the M3

model does not. We show the fit for both models in Figure
4(e) (top and middle). M9 provides a much better fit of
the true function, while M3 finds an overly simple solu-
tion. However, the LML strongly prefers the simplerM3

model, which achieves a value of 53.8 compared to 28.9 for
the modelM9. We additionally evaluate the CLML using
200 random orders and conditioning on m = 85 datapoints.
CLML strongly prefers the flexibleM9 model with a value
of 28.9 compared to 11.45 forM3.

We can understand the behaviour of LML and CLML by ex-
amining the decomposition of LML into a sum over data and
Figure 1(a). In Figure 4(d) we plot the terms log p(Dn|D<n)
of the decomposition as a function of n, averaged over 200
orderings of the data. For n > 50 observed datapoints, the
more flexible modelM9 achieves a better generalization
log-likelihood log p(Dn|D<n). However, for small n the
simpler M3 model achieves better generalization, where
the difference betweenM3 andM9 is more pronounced.
As a result, LML prefers the simplerM3 for up to n = 297
datapoints! For n ∈ [50, 296] the LML picks the model with
suboptimal generalization performance. We can achieve the
best of both worlds with the corrected modelM9c with the
parameter prior ad, bd ∼ N (0, (1/d2)2): strong generaliza-
tion performance both for small and large training dataset
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Figure 5. Neural hyperparameter optimization for CIFAR-100. The correlation (Spearman’s ρ) between the model rankings and
generalization. For panels (a), (b), we consider a fixed prior precision λ = 102, 10−1, and 10−3. (a) Correlation between the Laplace
BMA test accuracy and the LML. (b): Correlation between the BMA test accuracy and the CLML. (c): Correlation between the BMA
test accuracy and the LML for optimized global (left) and layer-wise (right) prior precision. The correlation between the LML and test
accuracy highly depends on the value of the prior precision. The CLML does not suffer from this sensitivity to the prior precision.

posterior contraction, which can incur a significant Occam
factor penalty (Section 3), because the first few terms in
the LML expansion are very negative. We also show that,
unlike the LML, the CLML is positively correlated with
generalization in both small and large n regimes, and that it
is possible for a single model to do well in both regimes.

6. Model Selection and Architecture Search
In Section 4.1, we discussed how the marginal likelihood
can be misaligned with generalization because the two no-
tions answer fundamentally different questions. In the
model selection and architecture search, we aim to find
the model with the best predictive distribution, not the prior
most likely to generate the training data. Here, we con-
sider neural architecture selection, following recent works
on using the Laplace marginal likelihood for ranking neural
architectures (Immer et al., 2021; Daxberger et al., 2021).
We investigate the correlation between LML and general-
ization performance across 25 convolutional (CNN) and
residual (ResNet) architectures of varying depth and width
on CIFAR-10 and CIFAR-100, following the setup of Immer
et al. (2021). See Appendix H for more details.

First, we investigate the correlation between the Laplace
marginal likelihood and BMA test accuracy, when the prior
precision (aka weight decay) λ is fixed. Figure 5(a) shows
the results for fixed prior precision λ = 102, 10−1, and
10−3. In each panel, we additionally report the Spearman’s
correlation coefficient ρ (Kendall, 1948) between the model
rankings according to the BMA test accuracy and the LML.
LML is positively correlated with the BMA test accuracy
when the prior precision is high, λ = 102, but the correla-
tion becomes increasingly negative as λ decreases. While
the prior precision has little effect on the BMA test accuracy,
it has a significant effect on the approximation of the LML
values and model ranking! As discussed in Section 4.1,
the marginal likelihood heavily penalizes vague priors, es-
pecially in large, flexible models. Moreover, as discussed
in Section 4.3, Laplace is especially sensitive to the prior

variance, and the number of parameters in the model.

By the same rationale, we expect the conditional marginal
likelihood to help alleviate this problem, since it evaluates
the likelihood of the data under the posterior, rather than the
prior. Moreover, CLML is evaluated in function space rather
than in parameter space (see Appendix D for details), and
consequently is not sensitive to the number of parameters in
the model. Indeed, in Figure 5(b) the CLML exhibits a posi-
tive correlation with the generalization performance for both
large and small values of the prior precision. In Appendix H
we show that unlike the LML, the CLML is positively cor-
related with BMA accuracy, BMA log-likelihood, MAP
accuracy and MAP log-likelihood across a wide range of
prior precision values both on CIFAR-10 and CIFAR-100.

Prior precision optimization. In Figure 5(c), we show
that optimizing the global or layer-wise prior precision leads
to a positive correlation between the LML and the BMA
test accuracy, following the online procedure in Immer et al.
(2021). This optimization selects high-precision priors, lead-
ing to a positive correlation between the LML estimate and
the test performance. Notably, optimizing a separate prior
scale for each layer leads to higher correlation, an observa-
tion that was also made in MacKay (1992c).

Summary. Claims that “the marginal likelihood can be
used to choose between two discrete model alternatives af-
ter training” and that “we only need to choose the model
with a higher LML value” (Immer et al., 2021) do not hold
universally: we see in Figure 5(a) that the marginal like-
lihood can be negatively correlated with generalization in
practice! In Figure 5(c) we have seen that this correlation
can be fixed by optimizing the prior precision, but in general
there is no recipe for how many prior hyperparameters we
should be optimizing to ensure a positive correlation. For
example, in Figure 5(c) optimizing the global prior precision
leads to a positive correlation for ResNet models but not for
CNNs. The CLML on the other hand consistently provides
a positive correlation with the generalization performance.
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Figure 5. Neural hyperparameter optimization for CIFAR-100. The correlation (Spearman’s ρ) between the model rankings and
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sizes n. These results are qualitatively what we expect: for
small datasizes, the prior, and thus the LML, are relatively
predictive of generalization. For intermediate size data, the
first terms in the LML decomposition have a negative effect
on how well LML predicts generalization. For asymptot-
ically large data sizes, the first terms have a diminishing
effect, and the LML becomes a consistent estimator for the
true model if it is contained within its support. For further
details, please see Appendix E.

Neural Networks. We show the rank of 6 different neu-
ral network architectures on their BMA test accuracy on
CIFAR-10 for different dataset sizes in Figure 10(b) (Ap-
pendix). We see that DenseNet121 and GoogLeNet train
faster than ResNet-18 and VGG19, but rank worse with
more data. In Figure 10(a) (Appendix), we show the correla-
tion of the BMA test log-likelihood with the LML is positive
for small datasets and negative for larger datasets, whereas
the correlation with the CLML is consistently positive. Fi-
nally, Figure 10(a) (Appendix) shows that the Laplace LML
heavily penalizes the number of parameters, as in Sec-
tion 4.3. We provide additional details in Appendix F.

Summary. In contrast with Lyle et al. (2020), we find
that models that train faster do not necessarily have higher
marginal likelihood, or better generalization. Indeed, the
opposite can be true: fast training is associated with rapid
posterior contraction, which can incur a significant Occam
factor penalty (Section 3), because the first few terms in
the LML expansion are very negative. We also show that,
unlike the LML, the CLML is positively correlated with
generalization in both small and large n regimes, and that it
is possible for a single model to do well in both regimes.

6. Model Selection and Architecture Search
In Section 4.1, we discussed how the marginal likelihood
can be misaligned with generalization because the two no-
tions answer fundamentally different questions. In the
model selection and architecture search, we aim to find
the model with the best predictive distribution, not the prior

most likely to generate the training data. Here, we con-
sider neural architecture selection, following recent works
on using the Laplace marginal likelihood for ranking neural
architectures (Immer et al., 2021; Daxberger et al., 2021).
We investigate the correlation between LML and general-
ization performance across 25 convolutional (CNN) and
residual (ResNet) architectures of varying depth and width
on CIFAR-10 and CIFAR-100, following the setup of Immer
et al. (2021). See Appendix H for more details.

First, we investigate the correlation between the Laplace
marginal likelihood and BMA test accuracy, when the prior
precision (aka weight decay) λ is fixed. Figure 5(a) shows
the results for fixed prior precision λ = 102, 10−1, and
10−3. In each panel, we additionally report the Spearman’s
correlation coefficient ρ (Kendall, 1948) between the model
rankings according to the BMA test accuracy and the LML.
LML is positively correlated with the BMA test accuracy
when the prior precision is high, λ = 102, but the correla-
tion becomes increasingly negative as λ decreases. While
the prior precision has little effect on the BMA test accuracy,
it has a significant effect on the approximation of the LML
values and model ranking! As discussed in Section 4.1,
the marginal likelihood heavily penalizes vague priors, es-
pecially in large, flexible models. Moreover, as discussed
in Section 4.3, Laplace is especially sensitive to the prior
variance, and the number of parameters in the model.

By the same rationale, we expect the conditional marginal
likelihood to help alleviate this problem, since it evaluates
the likelihood of the data under the posterior, rather than the
prior. Moreover, CLML is evaluated in function space rather
than in parameter space (see Appendix D for details), and
consequently is not sensitive to the number of parameters
in the model. Indeed, in Figure 5(b) the CLML exhibits
a positive correlation with the generalization performance
for both large and small values of the prior precision. In
Appendix H we show that unlike the LML and the negative
validation loss, the CLML is positively correlated with BMA
accuracy, BMA log-likelihood, MAP accuracy and MAP
log-likelihood across a wide range of prior precision values
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7. Hyperparameter Learning
We want to select hyperparameters that provide the best pos-
sible generalization. We have argued that LML optimization
is not always aligned with generalization. As in Section 4.2,
there are two ways LML optimization can go awry. The first
is associated with overfitting through ignoring uncertainty.
The second is associated with underfitting as a consequence
of needing to support many unreasonable functions. CLML
optimization can help address this second issue, but not the
first, since it still ignores uncertainty in the hyperparameters.

We provide examples of both issues in GP kernel hyperpa-
rameter learning. Curiously, overfitting the marginal likeli-
hood through ignoring uncertainty can lead to underfitting in
function space, which is not a feature of standard maximum
likelihood overfitting. We then demonstrate that the CLML
provides a highly practical mechanism for deep kernel hy-
perparameter learning, significantly improving performance
over LML optimization. The performance gains can be ex-
plained as a consequence of the second issue, where we
accordingly see the biggest performance gains on smaller
datasets, as we predict in the discussion in Section 4.2.

0 50 100 150

Data size, n

1.4

1.6

1.8

lo
g
E(
`)

HKL

LML

CLML

0.0 0.1 0.2 0.3

RQ kernel, α

0.0

0.2

0.4

0.6

0.8

1.0
Noise var σ = 0.2

Test LL

LML

CLML

(a) Underfitting bias (b) Underfitting with the RQ kernel

Figure 6. LML for hyperparameter learning in Gaussian pro-
cesses. (a): The log-lengthscale learned by LML and CLML in a
GP regression model averaged over 100 datasets generated from a
GP model with a lengthscale of 4. Unlike the train likelihood, LML
has a bias towards underfitting, consistently overestimating the
lengthscale, particularly for small n < 20. (b): Test log-likelihood,
LML and CLML as a function of the α hyper-parameter in the ra-
tional quadratic kernel with noise variance σ2 = 0.2. The CLML
is closely aligned with test log likelihood, unlike the LML.

7.1. Two issues with LML Optimization

Using Gaussian process (GP) kernel learning, we provide
illustrative examples of two conceptually different ways
LML optimization can select hyperparameters that provide
poor generalization, discussed in Section 4.2.

If we severely overfit the GP LML by optimizing with
respect to the covariance matrix itself, subject to no con-
straints, the solution is the empirical covariance of the data,
which is degenerate and biased. Figure 6(a) shows RBF
kernel learning inherits this bias by over-estimating the
length-scale parameter, which pushes the eigenvalues of the

covariance matrix closer to the degenerate unconstrained
solution. As we observe more data, the RBF kernel becomes
increasingly constrained, and the bias disappears (Wilson
et al., 2015). This finding is curious in that it shows how
ignoring uncertainty in LML can lead to underfitting in data
space, since a larger length-scale will lead to a worse fit of
the data. This behaviour is not a feature of standard max-
imum likelihood overfitting, and is also not a property of
the LML overfitting in the example of Figure 9 (Appendix).
But since it is overfitting arising from a lack of uncertainty
representation, the CLML suffers from the same issue.

In our next experiment, we generate data from a GP with a
rational quadratic (RQ) kernel. Figure 6(b) shows that if we
overestimate the observation noise, then the LML is com-
pletely misaligned with the shape of the test log-likelihood
as a function of the α hyper-parameter of the RQ kernel,
whereas the CLML is still strongly correlated with the test
likelihood. We see here the underfitting bias of Figure 1(b),
where supporting an α of any reasonable size leads to a prior
over functions unlikely to generate the training data. In Ap-
pendix I, we show that under the ground truth observation
noise both LML and CLML provide adequate representa-
tions of the test log-likelihood in this instance. Indeed, the
CLML is additionally more robust to misspecification than
the LML.

We provide further details in Appendix I.

7.2. Deep Kernel Learning

Deep kernel learning (DKL) presents a scenario in which
a large number of hyperparameters are tuned through
marginal likelihood optimization. While it has been noted
that DKL can overfit through ignoring hyperparameter un-
certainty (Ober et al., 2021), in this section we are primarily
concerned with the underfitting described in Section 4.2,
where the CLML will lead to improvements.

Here we showcase CLML optimization as a practical tool
in both UCI regression tasks and transfer learning tasks
from Patacchiola et al. (2020). In UCI regression tasks,
we examine the performance of LML vs CLML in terms
of test performance when training with limited amounts of
training data. In Figure 7 we see a common trend: when we
are restricted to a small number of training examples, LML
optimization is outperformed by CLML optimization. As
the number of training examples increases, the gap between
LML and CLML optimized models closes. We provide
further details, with complete results including a comparison
of negative log-likelihoods in Appendix J.

In transfer learning tasks we are typically concerned with
how well our method performs on unseen data, which may
be from a different distribution than the training data, rather
than how well aligned our prior is to the training data. In Fig-
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both on CIFAR-10 and CIFAR-100.

Prior precision optimization. In Figure 5(c), we show
that optimizing the global or layer-wise prior precision leads
to a positive correlation between the LML and the BMA
test accuracy, following the online procedure in Immer et al.
(2021). This optimization selects high-precision priors, lead-
ing to a positive correlation between the LML estimate and
the test performance. Notably, optimizing a separate prior
scale for each layer leads to higher correlation, an observa-
tion that was also made in MacKay (1992c).

Summary. Claims that “the marginal likelihood can be
used to choose between two discrete model alternatives af-
ter training” and that “we only need to choose the model
with a higher LML value” (Immer et al., 2021) do not hold
universally: we see in Figure 5(a) that the marginal like-
lihood can be negatively correlated with generalization in
practice! In Figure 5(c) we have seen that this correlation
can be fixed by optimizing the prior precision, but in general
there is no recipe for how many prior hyperparameters we
should be optimizing to ensure a positive correlation. For
example, in Figure 5(c) optimizing the global prior precision
leads to a positive correlation for ResNet models but not for
CNNs. The CLML on the other hand consistently provides
a positive correlation with the generalization performance.

7. Hyperparameter Learning
We want to select hyperparameters that provide the best pos-
sible generalization. We have argued that LML optimization
is not always aligned with generalization. As in Section 4.2,
there are two ways LML optimization can go awry. The first
is associated with overfitting through ignoring uncertainty.
The second is associated with underfitting as a consequence
of needing to support many unreasonable functions. CLML
optimization can help address this second issue, but not the
first, since it still ignores uncertainty in the hyperparameters.

We provide examples of both issues in GP kernel hyperpa-
rameter learning. Curiously, overfitting the marginal likeli-
hood through ignoring uncertainty can lead to underfitting in
function space, which is not a feature of standard maximum
likelihood overfitting. We then demonstrate that the CLML
provides a highly practical mechanism for deep kernel hy-
perparameter learning, significantly improving performance
over LML optimization. The performance gains can be ex-
plained as a consequence of the second issue, where we
accordingly see the biggest performance gains on smaller
datasets, as we predict in the discussion in Section 4.2.

7.1. Two issues with LML Optimization

Using Gaussian process (GP) kernel learning, we provide
illustrative examples of two conceptually different ways
LML optimization can select hyperparameters that provide
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Figure 6. LML for hyperparameter learning in Gaussian pro-
cesses. (a): The log-lengthscale learned by LML and CLML in a
GP regression model averaged over 100 datasets generated from a
GP model with a lengthscale of 4. Unlike the train likelihood, LML
has a bias towards underfitting, consistently overestimating the
lengthscale, particularly for small n < 20. (b): Test log-likelihood,
LML and CLML as a function of the α hyper-parameter in the ra-
tional quadratic kernel with noise variance σ2 = 0.2. The CLML
is closely aligned with test log likelihood, unlike the LML.

poor generalization, discussed in Section 4.2.

If we severely overfit the GP LML by optimizing with
respect to the covariance matrix itself, subject to no con-
straints, the solution is the empirical covariance of the data,
which is degenerate and biased. Figure 6(a) shows RBF
kernel learning inherits this bias by over-estimating the
length-scale parameter, which pushes the eigenvalues of the
covariance matrix closer to the degenerate unconstrained
solution. As we observe more data, the RBF kernel becomes
increasingly constrained, and the bias disappears (Wilson
et al., 2015). This finding is curious in that it shows how
ignoring uncertainty in LML can lead to underfitting in data
space, since a larger length-scale will lead to a worse fit of
the data. This behaviour is not a feature of standard max-
imum likelihood overfitting, and is also not a property of
the LML overfitting in the example of Figure 9 (Appendix).
But since it is overfitting arising from a lack of uncertainty
representation, the CLML suffers from the same issue.

In our next experiment, we generate data from a GP with a
rational quadratic (RQ) kernel. Figure 6(b) shows that if we
overestimate the observation noise, then the LML is com-
pletely misaligned with the shape of the test log-likelihood
as a function of the α hyper-parameter of the RQ kernel,
whereas the CLML is still strongly correlated with the test
likelihood. We see here the underfitting bias of Figure 1(b),
where supporting an α of any reasonable size leads to a prior
over functions unlikely to generate the training data. In Ap-
pendix I, we show that under the ground truth observation
noise both LML and CLML provide adequate representa-
tions of the test log-likelihood in this instance. Indeed, the
CLML is additionally more robust to misspecification than
the LML.

We provide further details in Appendix I.
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7.2. Deep Kernel Learning

Deep kernel learning (DKL) (Wilson et al., 2016b) presents
a scenario in which a large number of hyperparameters are
tuned through marginal likelihood optimization. While it
has been noted that DKL can overfit through ignoring hy-
perparameter uncertainty (Ober et al., 2021), in this section
we are primarily concerned with the underfitting described
in Section 4.2, where the CLML will lead to improvements.

Here we showcase CLML optimization as a practical tool
in both UCI regression tasks and transfer learning tasks
from Patacchiola et al. (2020). In UCI regression tasks,
we examine the performance of LML vs CLML in terms
of test performance when training with limited amounts of
training data. In Figure 7 we see a common trend: when we
are restricted to a small number of training examples, LML
optimization is outperformed by CLML optimization. As
the number of training examples increases, the gap between
LML and CLML optimized models closes. We provide
further details, with complete results including a comparison
of negative log-likelihoods in Appendix J.

In transfer learning tasks we are typically concerned with
how well our method performs on unseen data, which may
be from a different distribution than the training data, rather
than how well aligned our prior is to the training data. In Fig-
ure 7 we reproduce the Deep Kernel Transfer (DKT) transfer
learning experiments from Patacchiola et al. (2020), replac-
ing LML optimization with CLML optimization. In these
experiments DKL models are trained on one task with either
LML or CLML optimization, and then evaluated on a sepa-
rate but related task. Figure 4(a), and Table 4 (Appendix),
shows a comparison of methods on a transfer learning task
in which we train on the Omniglot dataset and test on the
EMNIST dataset. In both experiments CLML optimization
provides a clear improvement over LML optimization. Fig-
ure 7(b), and Table 3 (Appendix), shows a comparison of
methods on the QMUL head pose regression problem for
estimating the angular pose of gray-scale images of faces,

where the individuals in the test set are distinct from those
in the training set leading to dataset shift. For experimental
details see Patacchiola et al. (2020).

8. Discussion
While the marginal likelihood provides a powerful mecha-
nism for hypothesis testing, and can be practical for hyperpa-
rameter tuning, we show that it is in many ways misaligned
with generalization. These results are particularly timely in
light of recent work proposing the marginal likelihood for
model selection and hyperparameter tuning in deep learning.
We show that a conditional marginal likelihood retains the
convenient properties of the marginal likelihood, but helps
resolve the misalignment between the marginal likelihood
and generalization. We find that the conditional marginal
likelihood provides particularly compelling performance in
learning deep kernel hyperparameters, especially on smaller
datasets, and transfer learning problems.

To what extent does approximate inference affect our
results? Almost all of our experiments use the exact LML
and CLML: the density model, Fourier features, Gaussian
processes, and deep kernel learning. While the neural archi-
tecture in Section 6 necessarily use approximate inference,
the results are qualitatively similar to the exact experiments,
and these results are also what we expect from Section 4.
A key advantage of working with the CLML is that it can
be effectively approximated by sampling. However, what
we observe about the LML behaviour stands on its own,
independently of the CLML.

How does the correlation between LML and generaliza-
tion vary with dataset size n? The relationship between
the LML and generalization is non-monotonic with dataset
size. For very small datasets, the first (and only) terms in the
LML decomposition are typically predictive of generaliza-
tion. For intermediate datasets, these terms have a negative
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ure 7 we reproduce the Deep Kernel Transfer (DKT) transfer
learning experiments from Patacchiola et al. (2020), replac-
ing LML optimization with CLML optimization. In these
experiments DKL models are trained on one task with either
LML or CLML optimization, and then evaluated on a sepa-
rate but related task. Figure 4(a), and Table 4 (Appendix),
shows a comparison of methods on a transfer learning task
in which we train on the Omniglot dataset and test on the
EMNIST dataset. In both experiments CLML optimization
provides a clear improvement over LML optimization. Fig-
ure 7(b), and Table 3 (Appendix), shows a comparison of
methods on the QMUL head pose regression problem for
estimating the angular pose of gray-scale images of faces,
where the individuals in the test set are distinct from those
in the training set leading to dataset shift. For experimental
details see Patacchiola et al. (2020).

8. Conclusion
While the marginal likelihood provides a powerful mecha-
nism for hypothesis testing, and can be practical for hyperpa-
rameter tuning, we show that it is in many ways misaligned
with generalization. These results are particularly timely in
light of recent work proposing the marginal likelihood for
model selection and hyperparameter tuning in deep learning.
We show that a conditional marginal likelihood retains the
convenient properties of the marginal likelihood, but helps
resolve the misalignment between the marginal likelihood
and generalization. We find that the conditional marginal
likelihood provides particularly compelling performance in
learning deep kernel hyperparameters, especially on smaller
datasets, and transfer learning problems.
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effect on the correlation with generalization, as the posterior
can differ significantly from the prior. Finally, for asymp-
totically large datasets, the first terms have a diminishing
effect, and the LML becomes a consistent estimator for the
correct model, assuming it is within the set of considered
models. We observe these results empirically in Figure 4(d),
where LML picks the better generalizing model for n < 50
and n > 296. For n in [50, 296] it picks the wrong model.

Can we construct a model which performs well for both
small and large n? While we are primarily concerned
with model selection, model construction is intimately re-
lated. There is a conventional wisdom that one should use
small models for small datasets, and large models for large
datasets. We show in Figure 4(e) that this prescription is
incorrect: we can achieve the best of both worlds, a model
which is good in both small and large n regimes, by com-
bining flexibility with reasonable inductive biases, aligned
with the discussion in Wilson and Izmailov (2020).

Is the CLML “just” cross-validation? The LML itself
is arguably a form of cross-validation, although it is not stan-
dard cross-validation (Fong and Holmes, 2020). The CLML
can be significantly more efficient and practical than stan-
dard cross-validation for gradient-based learning of many
hyperparameters. However, our goal with the CLML was
not to explore a measure that is starkly different from cross-
validation, nor do we consider any arguable similarity with
cross-validation a deficiency. Instead, we show how a minor
modification to the LML can improve alignment with gener-
alization, and be practical for hyperparameter learning. We
also show in Appendix H that the CLML correlates better
than negative of the validation with the BMA test accuracy.

What are the most important practical take-aways?
The DKL hyperparameter learning with the CLML is of
particular practical significance. These experiments, in Sec-
tion 7.2, show that the CLML can be a promising drop-in
replacement for the LML for learning many hyperparam-
eters, especially for transfer learning and small datasets,
and are our most substantial experiments involving DNNs.
Future work in this area could have a substantial impact
on the way we estimate hyperparameters in probabilistic
models. Another practical take-away is that in general the
standard LML cannot reliably select models with strong
generalization.
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A. The Drawbacks of the Laplace Approximation: Example
We consider the following example to further demonstrate the drawbacks of the Laplace approximation discussed in
Section 4.3: we generate data from x ∼ N (sin(w), 1) with uniform prior w ∼ U [−α, α], then estimate the posterior on w
and evaluate the marginal likelihood to estimate the parameter α. The posterior is periodic with a period of 2π. Consequently,
as we increase α, the marginal likelihood will be roughly constant for α > wMAP , where wMAP is the lowest norm
maximum a posteriori (MAP) solution, as the ratio of the posterior volume to the prior volume (Occam factor) is roughly
constant in this regime. We visualize the posterior and the true LML in Figure 8. However, the Laplace approximation
only captures a single mode of the posterior, and thus greatly underestimates the posterior volume. As a result, the Laplace
marginal likelihood estimate decreases linearly with α. This toy example shows that Laplace can be problematic for tuning
the prior scale in Bayesian neural networks, where covering multiple diverse modes is beneficial for generalization.
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Figure 8. Laplace approximation. Model x ∼ N (sin(w), 1) with a uniform prior w ∼ U [−α, α]. (Left): Posterior density and a
Laplace approximation to the posterior (scaled for visualization); (Right): True marginal likelihood and the Laplace estimate as a function
of α. As Laplace only captures a single mode, the Laplace estimate of marginal likelihood decreases linearly with α while the true
marginal likelihood is roughly constant.

B. Variational Inference and ELBO
In variational inference, the evidence lower bound (ELBO), a lower bound on log-marginal likelihood is often used for
automatically setting hyperparameters (Hoffman et al., 2013; Kingma and Welling, 2013; Kingma et al., 2015; Alemi et al.,
2018). In variational auto-encoders (VAE), the whole decoder network (often, with millions of parameters) is treated as a
model hyper-parameter and is trained by maximizing the ELBO (Kingma and Welling, 2014).

The ELBO is given by

log p(D|M) ≥ Eq(w) log p(D|w)︸ ︷︷ ︸
Data fit

−KL(q(w)||p(w))︸ ︷︷ ︸
Complexity penalty

. (1)

In VI for Bayesian neural networks, the posterior is often approximated with a unimodal Gaussian distribution. For a
complex model, the ELBO will suffer from the same drawbacks described in Section 4.3 and Appendix A.

C. Overfitting in Gaussian Processes
In Figure 9 we provide a simple example in which LML optimization leads to severe overfitting. We generate a set of 100
evenly spaced points from a GP prior with an RBF kernel with a lengthscale of 0.75 and observation noise of 0.02.

We then use LML optimization to train two GP models on the first 50 data points: the first model is a standard GP with
constant mean and an RBF kernel, and the second is a GP with an RBF kernel, but where we have replaced the mean
function with a small neural network. The mean function of the second model is a feed forward ReLU network with two
hidden layers each with 50 units.

In Figure 9 (left) we see that by fitting the training data with a GP with constant mean and an RBF kernel we do not
necessarily extrapolate well, but our prediction is reasonable and our uncertainty appears to be well-calibrated. In Figure 9
(right) we see that in training a GP with an overly flexible mean function we are able to overfit to the training data, and
produce extrapolation predictions that are both incorrect, and very confident. By building a model with an incredibly flexible
prior, we are able to optimize out LML to concentrate heavily around a single solution. This model has a high likelihood of
generating the data, but does not extrapolate well, similar to the effect presented in Figure 1(c).
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Figure 9. LML overfitting in Gaussian Processes. Left: A fit of a GP regression model with a constant prior mean and Right: a prior
mean parameterized with an MLP and trained via marginal likelihood optimization. Train data is shown with circles, test data is shown
with crosses and the shaded region visualizes the 2σ-predictive region of the GP. Given enough flexibility with the prior mean, marginal
likelihood overfits the data, providing poor overconfident predictions outside of the train region.

D. Details on the Conditional Marginal Likelihood
Note that unlike LML, CLML depends on the ordering of the datapoints. To remove this undesirable dependence, we can
average the CLML over all possible orderings of the data:

1

n!

∑
σ∈Sn

n∑
i=m

log p(Dσ(i)|Dσ(1), . . . ,Dσ(i),M), (2)

where Sn is the set of all the possible permutations of n elements. Using all the n! permutations is prohibitively expensive in
most practical scenarios, so we approximate Eq. (2) as 1

|Ŝ|

∑
σ∈Ŝ

∑n
i=m log p(Dσ(i)|Dσ(1), . . . ,Dσ(i),M), where Ŝ ⊂ Sn

is a set containing several random permutations of the dataset. When D is a large dataset such that D<m and D≥m are both
sufficiently large, a single permutation may suffice.

Implementation. For all experiments involving the Laplace approximation, we compute the conditional marginal likeli-
hood as follows:

1. We train a model on 80% of the training data, and fit the LA approximation on the same subset of the data.

2. We tune a hyperparameter T that we use to re-scale the Laplace posterior covariance matrix to ensure that it does not
lead to very low BMA accuracies. We choose the value of T that achieves the highest BMA accuracy (average over
20 samples) on 5% of the training data. Our experimental results show that the optimal values of T generally ranges
between 0.1 and 0.001, so the LA posterior does not collapse on the MAP solution even as we use this re-scaling
parameter.

3. Finally, we directly compute the CLML p(D≥m|D<m) using the remaining 15% of the training data. This quantity
corresponds simply to the log predictive likelihood of the 15% of the data approximated using a Bayesian model
average of LA over 20 samples.

It is important to note that in all our plots, we show the BMA test accuracy and log-likelihood of the model trained on the
entire training data and for the Laplace approximation fit on the entire training data as well, and not just the 80% subset that
we condition the CLML on.

Function space. Note that in the procedure described above, we approximate CLML purely in function space: the estimate
only depends on the predictions made by the Bayesian model average and not the values of individual parameters. The
standard Laplace approximation of the LML is on the other hand quite sensitive to the number of parameters in the model.
Approximating the LML directly in function space is hard, because it would require approximating the integral over the
prior with simple Monte Carlo, but sampling from the prior over the weights of a neural network we will never randomly
sample the parameters that are likely to generate the data.

E. Details on the Fourier model
We can construct a model that achieves the best of both worlds: strong generalization performance both for small and
large training dataset sizes n. To do so, we consider the corrected modelM9c, an order-9 model with a prior ad, bd ∼
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Figure 9. LML overfitting in Gaussian Processes. Left: A fit of a GP regression model with a constant prior mean and Right: a prior
mean parameterized with an MLP and trained via marginal likelihood optimization. Train data is shown with circles, test data is shown
with crosses and the shaded region visualizes the 2σ-predictive region of the GP. Given enough flexibility with the prior mean, marginal
likelihood overfits the data, providing poor overconfident predictions outside of the train region.
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entire training data and for the Laplace approximation fit on the entire training data as well, and not just the 80% subset that
we condition the CLML on.

Function space. Note that in the procedure described above, we approximate CLML purely in function space: the estimate
only depends on the predictions made by the Bayesian model average and not the values of individual parameters. The
standard Laplace approximation of the LML is on the other hand quite sensitive to the number of parameters in the model.
Approximating the LML directly in function space is hard, because it would require approximating the integral over the
prior with simple Monte Carlo, but sampling from the prior over the weights of a neural network we will never randomly
sample the parameters that are likely to generate the data.

E. Details on the Fourier model
We can construct a model that achieves the best of both worlds: strong generalization performance both for small and
large training dataset sizes n. To do so, we consider the corrected modelM9c, an order-9 model with a prior ad, bd ∼
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N (0, (1/d2)2), following the data generating process. We show the data fit and the learning curve forM9c in Figure 4(d)
and (e) (bottom). While the predictive distribution ofM9c is almost identical to that ofM9 (see Figure 4(e) (middle)),M9c

achieves the best marginal likelihood (comparable toM3) and the best CLML (comparable toM9) when evaluated on 100
datapoints. In the learning curve,M9c provides comparable performance toM3 for small n, and comparable performance
toM9 for large n.

F. Training speed of Deep Neural Networks
Experimental details We consider 6 deep neural networks with architectures shown in Table F (LeCun et al., 1998;
Simonyan and Zisserman, 2014; Szegedy et al., 2015; He et al., 2016; Huang et al., 2017). We also consider 8 different
sizes of training datasets, {250, 500, 1000, 2000, 5000, 10, 000, 20, 000, 45, 000}, each constructed by randomly sampling
a subset of CIFAR-10. To produce a MAP estimate, we train a neural network using hyperparameters found in Table 2. All
models are trained using SGD with weight decay coefficient 0.0005, momentum coefficient of 0.9, initial learning rate 0.1,
and learning rate drops by a factor of 10 after 1

2 and 3
4 of the epochs. Data augmentations include random horizontal flips and

crops. We use the diagonal Laplace approximation to approximate the marginal likelihood and perform a Bayesian model
average over 20 samples to obtain the BMA test accuracy and log-likelihood. The CLML is computed using a 80%− 20%
split of the training data as described in detail in Section D. We note that the BMA test accuracy and log-likelihood that we
show in Figure 10 are computed with respect to all available training data and not just 80% of it.

Discussion Figure 10 (b) shows the ranking of the models according to their generalization performance, where a lower
ranking indicates a higher value of the BMA test accuracy. In particular, we see that VGG19 and GoogLeNet train faster
than ResNet-18 and DenseNet121 but generalize worse for bigger sizes of the CIFAR-10 dataset. This observation
extends to many neural architectures that can perform better or worse depending on the size of the dataset (Dosovitskiy
et al., 2020). This proves that a faster training speed does not necessarily imply a better generalization performance.
Results in Figure 10 (a) (left) are coherent with our conclusions from the Fourier example: the correlation of the BMA
test log-likelihood with the LML is positive for small sizes of the training data and negative for higher sizes, whereas the
correlation with CLML is consistently positive. Finally, Figure 10 (a) (right) shows that the LML approximated with LA
heavily penalizes the number of parameters, which reflects the sensitivity of LA to the number of parameters as discussed in
Sections 4.3.

Architecture Number of parameters
LeNet 62, 006
ResNet-6 609, 354
GoogLeNet 6, 166, 250
DenseNet121 6, 956, 298
VGG19 20, 040, 522
ResNet-18 11, 173, 962

Table 1. Neural architectures that we consider in Section 5.

# Samples Epochs Batch Size
250 900 32
500 900 32
1000 900 32
2000 600 64
5000 600 64
10000 300 128
20000 300 128
45000 300 128

Table 2. Training hyperparameters for experiments that we consider
for training neural networks in Section 5.

G. The Density Estimation Example
Consider the generative process where x is generated using a Gaussian distribution N (u, 1) and the mean parameter is in
turn generated using a Gaussian distributionN (µ, σ2). Given dataset D = {xi}N1 , we can show that the marginal likelihood
is equal to,

p(D|σ, µ) = N
(
µN , I + σ21N,N

)
,

where µN = µ× 1N =
[
µ . . . µ

]T︸ ︷︷ ︸
N

, and 1N ∈ RN is a column vector with all N elements equal to 1.

Proof. Indeed, we have xi = u+εi, where εi ∼ N (0, 1), and u ∼ N (µ, σ2). Thus, the observations xi are jointly Gaussian
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Figure 10. Training speed, generalization, and LML for deep neural networks (DNN). (a): (Left): The correlation of the CLML
and the LML with the BMA test log-likelihood. We show that the LML correlated positively with the BMA test log-likelihood (LL)
for small sizes of the training data, but negatively for larger sizes, whereas CLML is correlated consistently positively with the BMA
test log-likelihood for all sizes of the data. (Right): The correlation of of the CLML, LML and the BMA test log-likelihood with the
inverse number of parameters. The LML approximated with LA correlates negatively with number of parameters and assigns higher
values to more constrained models. This negative correlation might reflect one of the sensitivity of the Laplace approximation to the
number of parameters as discussed in Section 4.3. (b): Ranking of DNNs according to their Bayesian model average (BMA) test accuracy
approximated with LA for different sizes of the CIFAR-10 training data. A lower ranking indicates a higher BMA test accuracy. VGG19
and GoogLeNet, in contrast with ResNet-18 and DenseNet121, train faster but generalize worse for bigger sizes of the CIFAR-10
dataset.
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Figure 11. Density estimation (details). (a): Marginal log-likelihood, (b): test log-likelihood and (c): mean and (d): variance of the
predictive distribution as a function of the prior variance σ2. The predictive distribution is virtually constant with respect to prior variance
for σ2 > 10, while marginal likelihood sharply decreases. (e): Learning curves for three different choices of prior standard deviation σ2.
After observing n = 5 datapoints, the predictive distributions are almost indistinguishable between the different values of σ2, but due to
σ2 = 0.6 providing the best fit for n = 1 datapoint, marginal likelihood strongly prefers this choice.

with a mean Exi = E(u+ εi) = Eu = µ. The covariance structure is given by

cov(xi, xj) = E(xi − µ) · (xj − µ) = E(u+ εi − µ) · (u+ εj − µ) = E(u− µ) · (u− µ) + Eεiεj
= cov(u, u) + cov(εi, εj) = σ2 + δij ,

where δij is equal to 1 if i = j and 0 otherwise. Thus, we get D ∼ N (µN , I + σ21N,N ).

The posterior distribution is equal to,

p(u|D,σ, µ) = N
(

1

1/σ2 +N

(
N∑
i=1

xi +
1

σ2
µ

)
,

1

1/σ2 +N

)
. (3)

Proof. Let us denote x =
[
x1 . . . xN

]T
. We can write down the joint distribution over x and u, following from the

derivation marginal distribution of x above:[
x
u

]
∼ N

([
µN
µ

]
,

[
1N1TNσ

2 + I 1N · σ2

1TN · σ2 σ2

])
.
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approximated with LA for different sizes of the CIFAR-10 training data. A lower ranking indicates a higher BMA test accuracy. VGG19
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After observing n = 5 datapoints, the predictive distributions are almost indistinguishable between the different values of σ2, but due to
σ2 = 0.6 providing the best fit for n = 1 datapoint, marginal likelihood strongly prefers this choice.
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Using the properties of Gaussian distributions, we can compute the posterior p(u|x) as a Gaussian conditional (see e.g. Ch.
3 of Bishop, 2006b):

u | x ∼ N
(
µ+ 1TN · σ2 · (1N1TNσ

2 + I)−1 · (x− µN ), σ2 − 1TN · σ2 · (1N1TNσ
2 + I)−11N · σ2

)
. (4)

Now, note that (1N1TNσ
2 + I)−1 = I − σ2

1+Nσ2 1N1TN which can be verified by direct multiplication. Substituting the
expression for the inverse in Eq. (4), we recover Eq. (3).

The predictive distribution is equal to,

p(x∗|D,σ, µ) = N
(

1

1/σ2 +N

(
N∑
i=1

xi +
1

σ2
µ

)
, 1 +

1

1/σ2 +N

)
. (5)

Proof. Conditioned on u, the observations are Gaussian: p(x∗|u) = N (u, 1). Furthermore, we have shown that the posterior
p(u|D,σ, µ) = N (µ̂, σ̂2) is also Gaussian, with the parameters µ̂, σ̂2 given by Eq. (3). Then, the predictive distribution is
simply p(p(x∗|D,σ, µ) = N (µ̂, σ̂2 + 1), recovering Eq. (5).

We see that as the variance of the prior mean σ2 → +∞, both the predictive distribution and the posterior distribution do
not depend on this hyperparameter, whereas the marginal likelihood depends on it. This is another example whereas the
marginal likelihood is more sensitive to a hyperparameter that has little influence on the quality of future predictions. Hence,
the potential mismatch between marginal likelihood and generation.

H. Neural Architecture Search Details
We investigate the correlation between the log marginal likelihood (LML) and generalization in the context of image
classification using the CIFAR-10 and CIFAR-100 datasets. In particular, we consider two tasks: (1) model selection with
fixed prior precision, and (2) tuning the prior precision then performing a similar model selection task.

Experimental details We reconstruct the neural architecture search experiments with convolutional (CNN) and residual
(ResNet) networks for CIFAR-100 and CIFAR-10 from Immer et al. (2021). We use the same architectures:

• The CNNs consist of up to 5 blocks of 33 convolutions, followed by a ReLU activation function, and MaxPooling,
except in the first layer. BatchNorm is replaced by the fixup initialization (Zhang et al., 2019) as in Immer et al.
(2021). The width (number of channels) of the first channel varies from 2 to 32 for both datasets. The last layer is a
fully-connected layer to the class logit.

• ResNets of depths varying from 8 to 32 are used for CIFAR-10 and from 20 to 101 for CIFAR-100. The width varies
from 16 to 48 for CIFAR-10 and from 32 to 64 for CIFAR-100.

All models were trained for 250 epochs with an SGD optimizer and an initial learning rate of 0.01. The batch-size was fixed
to 128. For experiments where the prior precision was optimized, we used online optimization where the prior precision was
updated every 5 epochs for 100 iterations using an Adam optimizer with an initial learning equal to 1.0.

For all experiments in this section, we used the Kronecker Laplace approximation and computed the BMA test accuracy
and log-likelihood by averaging over 20 samples. The CLML was computed using a 80%− 20% split of the training data
as described in detail in Section D. We note that the BMA test accuracy and log-likelihood that we show in all figures are
computed using all available training data and not just 80% of it that we condition CLML on.

Discussion We visualize the correlation of the LML and the CLML in the top and bottom rows of Figure 12, respectively
for CIFAR-100. We also report the Spearman’s correlation coefficient ρ (Kendall, 1948), which measures the correlation
between the model rankings according to the BMA test accuracy and the LML/CLML. We see that the LML correlates
positively with the BMA test accuracy for high values of the prior precision, but negatively for lower values. This can be
understood in the light of what we discussed in Section 4.1; the LML penalizes low values of the prior precision because
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they correspond to diffuse priors. A similar trend is observed in Figure 13 for the MAP test accuracy, Figure 14 for the
BMA test log-likelihood, and Figure 15 for the MAP test log-likelihood for the CIFAR-100 dataset. Similar results are
obtained for CIFAR-10 in Figures 16, 17, 18, 19.

Figure 20 shows that optimizing the global and layerwise prior precision helps improve the correlation between LML and
the BMA test accuracy. To understand this effect, consider Figure 4(a): two models with the same test performance can have
very different values of the marginal likelihood depending on the prior variance. However, if we update the prior variance
such that it maximizes the LML, we can expect that the final prior variance to be low without a major effect on the accuracy,
therefore leading to a positive correlation between the LML and the BMA test accuracy.
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Figure 12. Neural architecture search for CIFAR-100. Visualization of the correlation between the model rankings according to
different metrics for fixed prior precision λ ∈ {102, 10−1, 10−2, 10−3, 10−4, 10−6}. We report the Spearman’s correlation coefficient ρ
in each figure. (Top row): Correlation between the BMA test accuracy and the log marginal likelihood (LML). (Top row): Correlation
between the BMA test accuracy and the conditional log marginal likelihood (CLML). The LML correlates positively with the BMA test
accuracy for high values of the prior precision, and negatively for low values of the prior precision (vague priors). The CLML on the other
hand is less sensitive to the value of the prior precision and consistently achieves a positive correlation with the BMA test accuracy.
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Figure 13. Neural architecture search for CIFAR-100. Visualization of the correlation between the model rankings according to
different metrics for fixed prior precision λ ∈ {102, 10−1, 10−2, 10−3, 10−4, 10−6}. We report the Spearman’s correlation coefficient ρ
in each figure. (Top row): Correlation between the maximum-a-posterior (MAP) test accuracy and the LML. (Top row): Correlation
between the MAP test accuracy and the CLML. The LML correlates positively with the MAP test accuracy for high values of the prior
precision, and negatively for low values of the prior precision, which correspond to vague priors. The CLML on the other hand is less
sensitive to the value of the prior precision and consistently achieves a positive correlation with the MAP test accuracy.

I. Extended Gaussian Process Results
GPs: RBF kernel. In Figure 21(a) we illustrate the bias of LML towards underfitting. We follow the experiment presented
in Wilson et al. (2015), and generate 100 datasets from an RBF Gaussian process prior with a lengthscale of l = 4. The
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they correspond to diffuse priors. A similar trend is observed in Figure 13 for the MAP test accuracy, Figure 14 for the
BMA test log-likelihood, and Figure 15 for the MAP test log-likelihood for the CIFAR-100 dataset. Similar results are
obtained for CIFAR-10 in Figures 16, 17, 18, 19.

Figure 20 shows that optimizing the global and layerwise prior precision helps improve the correlation between LML and
the BMA test accuracy. To understand this effect, consider Figure 4(a): two models with the same test performance can have
very different values of the marginal likelihood depending on the prior variance. However, if we update the prior variance
such that it maximizes the LML, we can expect that the final prior variance to be low without a major effect on the accuracy,
therefore leading to a positive correlation between the LML and the BMA test accuracy.

Comparison to the validation loss Figure 21 shows the correlation between the BMA test accuracy and the CLML (left)
as opposed to the negative validation loss (right). The negative validation loss correlates positively overall with the BMA test
accuracy for CNNs, but not for ResNets, resulting in a negative total correlation for low prior precision values. In contrast,
the CLML exhibits a positive correlation with the BMA test accuracy across different values of the prior precision.
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Figure 12. Neural architecture search for CIFAR-100. Visualization of the correlation between the model rankings according to
different metrics for fixed prior precision λ ∈ {102, 10−1, 10−2, 10−3, 10−4, 10−6}. We report the Spearman’s correlation coefficient ρ
in each figure. (Top row): Correlation between the BMA test accuracy and the log marginal likelihood (LML). (Top row): Correlation
between the BMA test accuracy and the conditional log marginal likelihood (CLML). The LML correlates positively with the BMA test
accuracy for high values of the prior precision, and negatively for low values of the prior precision (vague priors). The CLML on the other
hand is less sensitive to the value of the prior precision and consistently achieves a positive correlation with the BMA test accuracy.
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Figure 13. Neural architecture search for CIFAR-100. Visualization of the correlation between the model rankings according to
different metrics for fixed prior precision λ ∈ {102, 10−1, 10−2, 10−3, 10−4, 10−6}. We report the Spearman’s correlation coefficient ρ
in each figure. (Top row): Correlation between the maximum-a-posterior (MAP) test accuracy and the LML. (Top row): Correlation
between the MAP test accuracy and the CLML. The LML correlates positively with the MAP test accuracy for high values of the prior
precision, and negatively for low values of the prior precision, which correspond to vague priors. The CLML on the other hand is less
sensitive to the value of the prior precision and consistently achieves a positive correlation with the MAP test accuracy.
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Figure 14. Neural architecture search for CIFAR-100. Visualization of the correlation between the model rankings according to
different metrics for fixed prior precision λ ∈ {102, 10−1, 10−2, 10−3, 10−4, 10−6}. We report the Spearman’s correlation coefficient
ρ in each figure. (Top row): Correlation between the BMA test log-likelihood and the log marginal likelihood (LML). (Top row):
Correlation between the BMA test log-likelihood and the conditional log marginal likelihood (CLML). The LML correlates positively
with the BMA test log-likelihood for high values of the prior precision, and negatively for low values of the prior precision (vague priors).
The correlation shifts around λ = 10−1 as it remains positive for ResNets but becomes negative for CNNs. The CLML on the other hand
is less sensitive to the value of the prior precision and consistently achieves a positive correlation with the BMA test log-likelihood.
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Figure 15. Neural architecture search for CIFAR-100. Visualization of the correlation between the model rankings according to
different metrics for fixed prior precision λ ∈ {102, 10−1, 10−2, 10−3, 10−4, 10−6}. We report the Spearman’s correlation coefficient
ρ in each figure. (Top row): Correlation between the MAP test log-likelihood and the log marginal likelihood (LML). (Top row):
Correlation between the MAP test log-likelihood and the conditional log marginal likelihood (CLML). The LML correlates positively
with the MAP test log-likelihood for high values of the prior precision, and negatively for low values of the prior precision (vague priors).
We can that the correlation shift occurs around λ = 10−1 as the correlation remains positive for ResNets but becomes negative for CNNs.
The CLML on the other hand is less sensitive to the value of the prior precision and consistently achieves a positive correlation with the
MAP test log-likelihood.

datapoints are located at positions {1, . . . , 150}, the output scale is 1, and the observation noise is 0.2. For each dataset
and each n ∈ {1, . . . , 150}, we fit a new GP model to the the first n datapoints of the dataset: we maximize the LML or
CLML with respect to the lengthscale of the RBF kernel, using the ground truth value l = 4 as the initialization. We plot the
learned lengthscales averaged over the datasets as a function of n in 21(a). This experiment illustrates a unique quality of
marginal likelihood that distinguishes it from conventional maximum likelihood training: while low lengthscales would
lead to a better fit of the training data, marginal likelihood has a bias towards underfitting in the data space. Indeed, LML
consistently selects lengthscales that are larger than the the lengthscale that was used to generate the data, especially for
small n. We note that CLML does not remove this bias, and provides a very similar curve.

GPs: RQ kernel. Above, we have seen how marginal likelihood can over-estimate the lengthscale of an RBF kernel
leading to underfitting in data space. Here, we construct a more extreme example of this behavior using the rational quadratic
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Figure 14. Neural architecture search for CIFAR-100. Visualization of the correlation between the model rankings according to
different metrics for fixed prior precision λ ∈ {102, 10−1, 10−2, 10−3, 10−4, 10−6}. We report the Spearman’s correlation coefficient
ρ in each figure. (Top row): Correlation between the BMA test log-likelihood and the log marginal likelihood (LML). (Top row):
Correlation between the BMA test log-likelihood and the conditional log marginal likelihood (CLML). The LML correlates positively
with the BMA test log-likelihood for high values of the prior precision, and negatively for low values of the prior precision (vague priors).
The correlation shifts around λ = 10−1 as it remains positive for ResNets but becomes negative for CNNs. The CLML on the other hand
is less sensitive to the value of the prior precision and consistently achieves a positive correlation with the BMA test log-likelihood.
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Figure 15. Neural architecture search for CIFAR-100. Visualization of the correlation between the model rankings according to
different metrics for fixed prior precision λ ∈ {102, 10−1, 10−2, 10−3, 10−4, 10−6}. We report the Spearman’s correlation coefficient
ρ in each figure. (Top row): Correlation between the MAP test log-likelihood and the log marginal likelihood (LML). (Top row):
Correlation between the MAP test log-likelihood and the conditional log marginal likelihood (CLML). The LML correlates positively
with the MAP test log-likelihood for high values of the prior precision, and negatively for low values of the prior precision (vague priors).
We can that the correlation shift occurs around λ = 10−1 as the correlation remains positive for ResNets but becomes negative for CNNs.
The CLML on the other hand is less sensitive to the value of the prior precision and consistently achieves a positive correlation with the
MAP test log-likelihood.

I. Extended Gaussian Process Results
GPs: RBF kernel. In Figure 22(a) we illustrate the bias of LML towards underfitting. We follow the experiment presented
in Wilson et al. (2015), and generate 100 datasets from an RBF Gaussian process prior with a lengthscale of l = 4. The
datapoints are located at positions {1, . . . , 150}, the output scale is 1, and the observation noise is 0.2. For each dataset
and each n ∈ {1, . . . , 150}, we fit a new GP model to the the first n datapoints of the dataset: we maximize the LML or
CLML with respect to the lengthscale of the RBF kernel, using the ground truth value l = 4 as the initialization. We plot the
learned lengthscales averaged over the datasets as a function of n in 22(a). This experiment illustrates a unique quality of
marginal likelihood that distinguishes it from conventional maximum likelihood training: while low lengthscales would
lead to a better fit of the training data, marginal likelihood has a bias towards underfitting in the data space. Indeed, LML
consistently selects lengthscales that are larger than the the lengthscale that was used to generate the data, especially for
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Figure 16. Neural architecture search for CIFAR-10. Visualization of the correlation between the model rankings according to different
metrics for fixed prior precision λ ∈ {102, 10−1, 10−2, 10−4}. We report the Spearman’s correlation coefficient ρ in each figure. (Top
row): Correlation between the BMA test accuracy and the log marginal likelihood (LML). (Top row): Correlation between the BMA test
accuracy and the conditional log marginal likelihood (CLML). The LML correlates positively with the BMA test accuracy for high values
of the prior precision, and negatively for low values of the prior precision (vague priors). The CLML on the other hand is less sensitive to
the value of the prior precision and consistently achieves a positive correlation with the BMA test accuracy.
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Figure 17. Neural architecture search for CIFAR-10. Visualization of the correlation between the model rankings according to different
metrics for fixed prior precision λ ∈ {102, 10−1, 10−2, 10−4}. We report the Spearman’s correlation coefficient ρ in each figure. (Top
row): Correlation between the maximum-a-posterior (MAP) test accuracy and the LML. (Top row): Correlation between the MAP test
accuracy and the CLML. The LML correlates positively with the MAP test accuracy for high values of the prior precision, and negatively
for low values of the prior precision, which correspond to vague priors. The CLML on the other hand is less sensitive to the value of the
prior precision and consistently achieves a positive correlation with the MAP test accuracy.

(RQ) kernel (see Rasmussen and Nickisch (2010)): kRQ(x1, x2) =
(
1 + ‖x1−x2‖2

2αl2

)−α
. The hyperparameters are the

lengthscale l and α; lower values of α correspond to higher prior correlations, while as α→∞ the kernel approaches the
RBF kernel with lengthscale l.

We generate the data from a GP with an RQ kernel with hyperparameters α̂ = 0.05, l̂ = 0.5, and observation noise standard
deviation σ̂ = 0.1. The dataset is shown in Appendix Figure 22. We then evaluate the LML and CLML as a function of α
and compare them to the true BMA predictive likelihood of test data. For this experiment we set the lengthscale l = l̂ to its
ground truth value, and we consider two values of the observation noise standard deviation: ground truth σ = σ̂ = 0.1 and
over-estimated noise σ = 2 · σ̂ = 0.2. We show the results in Figure 21(b). For the ground-truth noise scale, both LML
and CLML provide an adequate representation of the test likelihood, although they both peak at a lower α value than the
test likelihood surface. However, for σ = 0.2 the marginal likelihood is completely misaligned with the test log-likelihood:
LML peaks at α ≈ 0, and then sharply decreases, while test LL is the lowest near α = 0, and increases with α. The CLML
does a much better job of tracking the test LL curve.
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Figure 16. Neural architecture search for CIFAR-10. Visualization of the correlation between the model rankings according to different
metrics for fixed prior precision λ ∈ {102, 10−1, 10−2, 10−4}. We report the Spearman’s correlation coefficient ρ in each figure. (Top
row): Correlation between the BMA test accuracy and the log marginal likelihood (LML). (Top row): Correlation between the BMA test
accuracy and the conditional log marginal likelihood (CLML). The LML correlates positively with the BMA test accuracy for high values
of the prior precision, and negatively for low values of the prior precision (vague priors). The CLML on the other hand is less sensitive to
the value of the prior precision and consistently achieves a positive correlation with the BMA test accuracy.
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Figure 17. Neural architecture search for CIFAR-10. Visualization of the correlation between the model rankings according to different
metrics for fixed prior precision λ ∈ {102, 10−1, 10−2, 10−4}. We report the Spearman’s correlation coefficient ρ in each figure. (Top
row): Correlation between the maximum-a-posterior (MAP) test accuracy and the LML. (Top row): Correlation between the MAP test
accuracy and the CLML. The LML correlates positively with the MAP test accuracy for high values of the prior precision, and negatively
for low values of the prior precision, which correspond to vague priors. The CLML on the other hand is less sensitive to the value of the
prior precision and consistently achieves a positive correlation with the MAP test accuracy.

small n. We note that CLML does not remove this bias, and provides a very similar curve.

GPs: RQ kernel. Above, we have seen how marginal likelihood can over-estimate the lengthscale of an RBF kernel
leading to underfitting in data space. Here, we construct a more extreme example of this behavior using the rational quadratic
(RQ) kernel (see Rasmussen and Nickisch (2010)): kRQ(x1, x2) =

(
1 + ‖x1−x2‖2

2αl2

)−α
. The hyperparameters are the

lengthscale l and α; lower values of α correspond to higher prior correlations, while as α→∞ the kernel approaches the
RBF kernel with lengthscale l.

We generate the data from a GP with an RQ kernel with hyperparameters α̂ = 0.05, l̂ = 0.5, and observation noise standard
deviation σ̂ = 0.1. The dataset is shown in Appendix Figure 23. We then evaluate the LML and CLML as a function of α
and compare them to the true BMA predictive likelihood of test data. For this experiment we set the lengthscale l = l̂ to its
ground truth value, and we consider two values of the observation noise standard deviation: ground truth σ = σ̂ = 0.1 and
over-estimated noise σ = 2 · σ̂ = 0.2. We show the results in Figure 22(b). For the ground-truth noise scale, both LML
and CLML provide an adequate representation of the test likelihood, although they both peak at a lower α value than the
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Figure 18. Neural architecture search for CIFAR-10. Visualization of the correlation between the model rankings according to different
metrics for fixed prior precisionλ ∈ {102, 10−1, 10−2, 10−4}. We report the Spearman’s correlation coefficient ρ in each figure. (Top
row): Correlation between the BMA test log-likelihood and the log marginal likelihood (LML). (Top row): Correlation between the
BMA test log-likelihood and the conditional log marginal likelihood (CLML). The LML almost does not correlate with the BMA test
log-likelihood for high values of the prior precision, but shows a negative correlation for low values of the prior precision (vague priors).
The correlation shifts around λ = 10−1 as it remains positive for ResNets but becomes negative for CNNs. The CLML on the other hand
is less sensitive to the value of the prior precision and consistently achieves a positive correlation with the BMA test log-likelihood.
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Figure 19. Neural architecture search for CIFAR-10. Visualization of the correlation between the model rankings according to different
metrics for fixed prior precision λ ∈ {102, 10−1, 10−2, 10−4}. We report the Spearman’s correlation coefficient ρ in each figure. (Top
row): Correlation between the MAP test log-likelihood and the log marginal likelihood (LML). (Top row): Correlation between the
MAP test log-likelihood and the conditional log marginal likelihood (CLML). The LML almost does not correlate with the MAP test
log-likelihood for high values of the prior precision, but shows a negative correlation for low values of the prior precision (vague priors).
We can that the correlation shift occurs around λ = 10−1 as the correlation remains positive for ResNets but becomes negative for CNNs.
The CLML on the other hand is less sensitive to the value of the prior precision and consistently achieves a positive correlation with the
MAP test log-likelihood.

In Figure 22 (a), (b) we show the fit of the model with over-estimated observation noise σ = 0.2 for the α parameter chosen
by maximizing the marginal likelihood and CML respectively. For the CML, we condition on m = 45 datapoints (the
training dataset size is n = 50), and we average the results over 20 random orderings of the data.

In panel (c) of Figure 22 we show the learning curve averaged over 100 random orderings of the data. While for large n the
α = 0.3 model generalizes better, the small-n terms in the marginal likelihood decomposition dominate, so that marginal
likelihood prefers the simpler α = 0.001 model.
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Figure 18. Neural architecture search for CIFAR-10. Visualization of the correlation between the model rankings according to different
metrics for fixed prior precisionλ ∈ {102, 10−1, 10−2, 10−4}. We report the Spearman’s correlation coefficient ρ in each figure. (Top
row): Correlation between the BMA test log-likelihood and the log marginal likelihood (LML). (Top row): Correlation between the
BMA test log-likelihood and the conditional log marginal likelihood (CLML). The LML almost does not correlate with the BMA test
log-likelihood for high values of the prior precision, but shows a negative correlation for low values of the prior precision (vague priors).
The correlation shifts around λ = 10−1 as it remains positive for ResNets but becomes negative for CNNs. The CLML on the other hand
is less sensitive to the value of the prior precision and consistently achieves a positive correlation with the BMA test log-likelihood.
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Figure 19. Neural architecture search for CIFAR-10. Visualization of the correlation between the model rankings according to different
metrics for fixed prior precision λ ∈ {102, 10−1, 10−2, 10−4}. We report the Spearman’s correlation coefficient ρ in each figure. (Top
row): Correlation between the MAP test log-likelihood and the log marginal likelihood (LML). (Top row): Correlation between the
MAP test log-likelihood and the conditional log marginal likelihood (CLML). The LML almost does not correlate with the MAP test
log-likelihood for high values of the prior precision, but shows a negative correlation for low values of the prior precision (vague priors).
We can that the correlation shift occurs around λ = 10−1 as the correlation remains positive for ResNets but becomes negative for CNNs.
The CLML on the other hand is less sensitive to the value of the prior precision and consistently achieves a positive correlation with the
MAP test log-likelihood.

test likelihood surface. However, for σ = 0.2 the marginal likelihood is completely misaligned with the test log-likelihood:
LML peaks at α ≈ 0, and then sharply decreases, while test LL is the lowest near α = 0, and increases with α. The CLML
does a much better job of tracking the test LL curve.

In Figure 23 (a), (b) we show the fit of the model with over-estimated observation noise σ = 0.2 for the α parameter chosen
by maximizing the marginal likelihood and CML respectively. For the CML, we condition on m = 45 datapoints (the
training dataset size is n = 50), and we average the results over 20 random orderings of the data.

In panel (c) of Figure 23 we show the learning curve averaged over 100 random orderings of the data. While for large n the
α = 0.3 model generalizes better, the small-n terms in the marginal likelihood decomposition dominate, so that marginal
likelihood prefers the simpler α = 0.001 model.
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Figure 20. Neural network hyperparameter optimization for CIFAR-10 and CIFAR-100. Correlation between the log marginal
likelihood (LML) and the BMA test accuracy for (Left) optimized global prior precision, and (Right) optimized layerwise prior precision
for CIFAR-10. We report the Spearman’s correlation coefficient ρ in each figure. We observe that the layerwise optimization further
improves the correlation between the LML and the BMA test accuracy.
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Figure 21. LML for hyper-parameter tuning in Gaussian Processes. (a): The log-lengthscale learned by LML and CLML in a GP
regression model averaged over 100 datasets generated from a GP model with a lengthscale of 4. Unlike the train likelihood, LML has a
bias towards underfitting, consistently overestimating the lengthscale, particularly for small n < 20. (b): Test log-likelihood, LML and
CLML as a function of the α hyper-parameter in the rational quadratic kernel. While in panel with observation noise σ = 0.1 the LML
roughly captures the shape of the test likelihood curve, with σ = 0.2 the two curves are completely misaligned.

J. Deep Kernel Learning Details
J.1. UCI Regression

For the UCI regression datasets we use a DKL model with a fully-connected ReLU architecture of [D, 50, 50, 2], where D
is the dimensionality of the data, and train using random subsets of the full UCI datasets ranging in size from 100 to 700
training points. We use the Bayesian Benchmarks library1 to obtain the datasets, with a modification to ensure test data are
not included in the normalization statistics. Models are trained using the closed form LML and CLML forms known for
Gaussian process regression.

In figure 23 we show how the RMSE (normalized by dataset) varies for CLML optimization as a function of the fraction of
data used used to condition the conditional marginal likelihood. As a general trend, the performance of CLML optimization
increases as we use a larger fraction of the available data to condition on and a smaller fraction to compute the likelihood.

In Figure 24 we show the negative log likelihoods (normalized by dataset) of the N = 100 models on the UCI regression
problems. While there is some variance in the relative gap in performance between CLML and LML optimization, in
all cases we see that for very restricted train set sizes CLML not only produces more accurate predictions, but is more
performant in terms of NLL.

J.2. DKT Transfer Learning

Tables 3 and 4 give the numerical results accompanying Figure 7. From these tables we see that CLML optimization with
the same model configuration consistently outperforms LML optimization, and in both experiments leads to the highest

1https://github.com/hughsalimbeni/bayesian_benchmarks
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Figure 20. Neural network hyperparameter optimization for CIFAR-10 and CIFAR-100. Correlation between the log marginal
likelihood (LML) and the BMA test accuracy for (Left) optimized global prior precision, and (Right) optimized layerwise prior precision
for CIFAR-10. We report the Spearman’s correlation coefficient ρ in each figure. We observe that the layerwise optimization further
improves the correlation between the LML and the BMA test accuracy.

25 50 75

3

2

CL
M

L

= 0.43

= 102

25 50 75

3

2

1 = 0.82
= 10 1

25 50 75

3

2

1 = 0.87
= 10 2

BMA test accuracy [%]
25 50 75

3

2
Ne

g.
 V

al
id

. L
os

s

= 0.4

= 102

25 50 75

4

3

2

= 0.43

= 10 1

25 50 75

4

3

2

= 0.33

= 10 2

BMA test accuracy [%]

CNN
ResNet

107105103

# Parameters

(a) CLML vs BMA accuracy (b) Negative of the validation loss vs BMA accuracy

Figure 21. Neural hyperparameter optimization for CIFAR-100. The correlation (Spearman’s ρ) between the model rankings and
generalization. For panels (a), (b), we consider a fixed prior precision λ = 102, 10−1, and 10−3. (a): Correlation between the BMA test
accuracy and the CLML. (a) Correlation between the BMA test accuracy and the negative of the validation loss. Similarly to the LML and
the CLML, the negative of the validation loss correlates positively with the test accuracy for a high prior precision. For lower values of the
prior precision, the negative validation loss correlates positively with the BMA test accuracy for CNNs but not for ResNets, therefore
correlating negatively overall with the BMA test accuracy for CIFAR-100.

J. Deep Kernel Learning Details
J.1. UCI Regression

For the UCI regression datasets we use a DKL model with a fully-connected ReLU architecture of [D, 50, 50, 2], where D
is the dimensionality of the data, and train using random subsets of the full UCI datasets ranging in size from 100 to 700
training points. We use the Bayesian Benchmarks library1 to obtain the datasets, with a modification to ensure test data are
not included in the normalization statistics. Models are trained using the closed form LML and CLML forms known for
Gaussian process regression.

In figure 24 we show how the RMSE (normalized by dataset) varies for CLML optimization as a function of the fraction of
data used used to condition the conditional marginal likelihood. As a general trend, the performance of CLML optimization
increases as we use a larger fraction of the available data to condition on and a smaller fraction to compute the likelihood.

In Figure 25 we show the negative log likelihoods (normalized by dataset) of the N = 100 models on the UCI regression
problems. While there is some variance in the relative gap in performance between CLML and LML optimization, in
all cases we see that for very restricted train set sizes CLML not only produces more accurate predictions, but is more
performant in terms of NLL.

J.2. DKT Transfer Learning

Tables 3 and 4 give the numerical results accompanying Figure 7. From these tables we see that CLML optimization with
the same model configuration consistently outperforms LML optimization, and in both experiments leads to the highest
performing model. For full experimental details see Patacchiola et al. (2020).

1https://github.com/hughsalimbeni/bayesian_benchmarks
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(a) LML-optimized α (b) CLML-optimized α (c) Learning curves

Figure 22. Gaussian process: RQ kernel (details). The data fit and learning curves for the GP models with the RQ kernel with different
α parameters. (a): The α parameter maximizing the marginal likelihood; (b): the α parameter maximizing the CML. In each panel, the
red dots show the training data, the black line shows the true latent function, the blue line shows the predictive mean, and the shaded
region shows the 2σ-region under the predictive distribution. (c): learning curves for small α providing the best marginal likelihood,
and high α providing the best generalization. While the larger α value generalizes better when the training set size is n ≥ 50, marginal
likelihood prefers small α values, as the model with a small α generalizes better on small datasets with n ≤ 15.
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Figure 23. Effect of the parameter m in the performance of DKL on several UCI regression datasets. The general trend is such that setting
m to be a larger, so that the CLML is conditioned on a larger fraction of the available training data, leads to better performance.

performing model. For full experimental details see Patacchiola et al. (2020).

K. Choice of m for the Conditional Marginal Likelihood
The hyperparameter m — the number of datapoints that we condition on in CLML — has an important effect on the
conditional marginal likelihood. Indeed, if we set m = 0, we recover the marginal likelihood. Setting m = n − 1, we
recover leave-one-out cross-validation likelihood for the BMA model, assuming we average the CLML over all possible
orderings of the data. Generally, we find that CLML works best for relatively large values of m. However, setting m << n
(for example, in the architecture search experiments in Section 6) allows us to estimate CLML without averaging over
multiple orderings.

In Figure 23 we show the effect of m on the final RMSE for Deep Kernel Learning models trained with CLML. We find that
larger values of m lead to better performance, but the results are relatively stable with respect to m.

Method Model MSE

CLML DKT + RBF 0.066± 0.08
DKT + Spectral 0.076± 0.05

LML DKT + RBF 0.12± 0.04
DKT + Spectral 0.10± 0.01

Table 3. CLML and LML optimization of deep kernel transfer models on the QMUL head pose trajectory task of Patacchiola et al. (2020).
In this limited data regime the focus on test performance of CLML leads to stronger performance.
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Figure 22. LML for hyper-parameter tuning in Gaussian Processes. (a): The log-lengthscale learned by LML and CLML in a GP
regression model averaged over 100 datasets generated from a GP model with a lengthscale of 4. Unlike the train likelihood, LML has a
bias towards underfitting, consistently overestimating the lengthscale, particularly for small n < 20. (b): Test log-likelihood, LML and
CLML as a function of the α hyper-parameter in the rational quadratic kernel. While in panel with observation noise σ = 0.1 the LML
roughly captures the shape of the test likelihood curve, with σ = 0.2 the two curves are completely misaligned.
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(a) LML-optimized α (b) CLML-optimized α (c) Learning curves

Figure 23. Gaussian process: RQ kernel (details). The data fit and learning curves for the GP models with the RQ kernel with different
α parameters. (a): The α parameter maximizing the marginal likelihood; (b): the α parameter maximizing the CML. In each panel, the
red dots show the training data, the black line shows the true latent function, the blue line shows the predictive mean, and the shaded
region shows the 2σ-region under the predictive distribution. (c): learning curves for small α providing the best marginal likelihood,
and high α providing the best generalization. While the larger α value generalizes better when the training set size is n ≥ 50, marginal
likelihood prefers small α values, as the model with a small α generalizes better on small datasets with n ≤ 15.

K. Choice of m for the Conditional Marginal Likelihood
The hyperparameter m — the number of datapoints that we condition on in CLML — has an important effect on the
conditional marginal likelihood. Indeed, if we set m = 0, we recover the marginal likelihood. Setting m = n − 1, we
recover leave-one-out cross-validation likelihood for the BMA model, assuming we average the CLML over all possible
orderings of the data. Generally, we find that CLML works best for relatively large values of m. However, setting m << n
(for example, in the architecture search experiments in Section 6) allows us to estimate CLML without averaging over
multiple orderings.

In Figure 24 we show the effect of m on the final RMSE for Deep Kernel Learning models trained with CLML. We find that
larger values of m lead to better performance, but the results are relatively stable with respect to m.

Method Model MSE

CLML DKT + RBF 0.066± 0.08
DKT + Spectral 0.076± 0.05

LML DKT + RBF 0.12± 0.04
DKT + Spectral 0.10± 0.01

Table 3. CLML and LML optimization of deep kernel transfer models on the QMUL head pose trajectory task of Patacchiola et al. (2020).
In this limited data regime the focus on test performance of CLML leads to stronger performance.
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Figure 24. Left: RMSE and right: NLL values normalized by dataset for DKL models trained on UCI regression tasks when trained
with N = 300 datapoints over 10 independent initializations. For this training set size not only does CLML optimization lead to better
accuracy on the test set, but also to better test likelihoods in limited data settings.

Method Model Accuracy

CLML
DKT + CosSim 75.34± 0.35

DKT + BNCosSim 76.03± 0.57
DKT + Linear 75.64± 0.38

LML
DKT + CosSim 73.06± 2.36

DKT + BNCosSim 75.06± 1.10
DKT + Linear 75.97± 0.70

Table 4. CLML and LML optimization of deep kernel transfer models on a transfer learning task in which the training data is from the
Omniglot dataset, and the test data from the EMNIST dataset. In this transfer learning setting we should be more focused on the test
performance, as opposed to the alignment of our model with the training data, which is a focus more closely aligned with the biases of
CLML than LML optimization.
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Figure 24. Effect of the parameter m in the performance of DKL on several UCI regression datasets. The general trend is such that setting
m to be a larger, so that the CLML is conditioned on a larger fraction of the available training data, leads to better performance.
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Figure 25. Left: RMSE and right: NLL values normalized by dataset for DKL models trained on UCI regression tasks when trained
with N = 300 datapoints over 10 independent initializations. For this training set size not only does CLML optimization lead to better
accuracy on the test set, but also to better test likelihoods in limited data settings.

Method Model Accuracy

CLML
DKT + CosSim 75.34± 0.35

DKT + BNCosSim 76.03± 0.57
DKT + Linear 75.64± 0.38

LML
DKT + CosSim 73.06± 2.36

DKT + BNCosSim 75.06± 1.10
DKT + Linear 75.97± 0.70

Table 4. CLML and LML optimization of deep kernel transfer models on a transfer learning task in which the training data is from the
Omniglot dataset, and the test data from the EMNIST dataset. In this transfer learning setting we should be more focused on the test
performance, as opposed to the alignment of our model with the training data, which is a focus more closely aligned with the biases of
CLML than LML optimization.


