I only want to write this down to have a place to look it up:

If we want to integrate abf(x)g(x) , we can use: (fg)(x)=f(x)g(x)+f(x)g(x)f(x)g(x)|a=xb=abf(x)g(x)+f(x)g(x)dxabf(x)g(x)dx=f(x)g(x)|a=xbabf(x)g(x)dx

And if we want to substitute a function in an integral:

g(a)g(b)f(x)dx=F(g(b))F(g(a))=(Fg)(b)(Fg)(a)==ab(Fg)(x)dx=abf(g(x))g(x)dx

(with F(x)=xf(x)dx) or using a trick:

abf(g(x))dx=F(b)F(a)=(Fgg1)(b)(Fgg1)(a)==(Fg1)(g(b))(Fg1)(g(a))=g(a)g(b)(Fg1)(x)dx==g(a)g(b)F(g1(x))g1(x)dx=g(a)g(b)f(g(g1(x)))g1(x)dx==g(a)g(b)f(x)1g(g1(x))dx

(with F(x)=xf(g(x))dx)